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The Solar Cycle(s)

400 Years of Sunspot Observations
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Butterfly Diagram

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS
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George Ellery Hale
“On the Probable Existence of a Magnetic Field in Sun-Spots”
Hale, 1908
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Cycle

Cycle
n+1

Rise
phase

Declining
phase

Leading polarities of ARs are the same in a given
hemisphere
And opposite in the opposite hemisphere

Active regions bi-poles are oriented almost E-W.

Typically the leading polarity of an AR is closer to
the equator.

The mean tilt angle between the leading and
trailing polarities increases linearly with the
latitude.
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Solar Proxies (of the magnetic field)

Ermolli et al. 2014
https://ui.adsabs.harvard.edu/abs/2014SSRv..186..105E/abstract

Magnetogram, Fe | 617 nm  CH band, 434 m

Call' K, 393 nm Fe XVI, 33 nm




Photospheric Indices

Sunspot Number (SN)/ Group Sunspot Number (GSN): weighted estimate of individual sunspots and sunspot
number as derived from white light full-disk observations.
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Sunspot Area: even more challenging than SN and GSN, but more meaningful.

Mandal et al. 2020
https://ui.adsabs.harvard.edu/abs/2020A%26A...640A..78M/abstract

http://www2.mps.mpg.de/projects/sun-climate/data.html


https://www.sidc.be/silso/datafiles
https://ui.adsabs.harvard.edu/abs/2020A%26A...640A..78M/abstract

Chromospheric Indices

(see also Linsky 2017, https://ui.adsabs.harvard.edu/abs/2017ARA%26A..55..159L/abstract )
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Relative Intensity

Call K393.37 nm

Observed from the ground!

Plethora of observations, dating back to 1904 (Kodaikanal)

Skumanich et al. 1984

W S e ST

N A N [ S |

IEEE AN

quiet sun (cell + network) ]

-

Calcium II K line

bl 1 1

Wavelength

logAFc, 11 = 0.6log < B > +4.8.

Schrijver et al. 1989

Intranetwork
bright points/ K grains

/ \\\ 200 Facu];e .', g

AV ST W \-.

Plage Bri}zhmén& REP o s R S SV Y
Ny e % el f & .

qe
Ar 3
Tk "
s
e [ A
Plage ‘'Pores

Supergranulation 3 Active Regions



Call K393.37 nm

Sun-as-a-star observations: 1A, k1,k2,k3 ISS @ SOLIS

Normahzed tiux

https://solis.nso.edu/0/iss/iss_timeseries.html
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Full disk Observations: Plage index (area of plage).

http://www2.mps.mpg.de/projects/sun-climate/data.html
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Other Chromospheric/Transition Region/Corona Indices

Solar Spectrum at SORCE SOLSTICE Resolution (0.1 nm)
T T T T T

»

Mg ll-Index: Core-to-wings ratio
Sun-as-a-star

Bremen Index
https://www.iup.uni-bremen.de/UVSAT/Datasets/mgii

Irradiance (x10'* photons/s/cm?/nm)

Ha full-disk observations: Prominences, Filaments
Full-disk observations

https://bass2000.o0bspm.fr/home.php
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Proxies Applications
Shin et al. 2020

Synthetic (pseudo) magnetograms

Generated HMI

SDO/HMI _
Lovric et al. 2017
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Estimate other proxies or other properties in lack of measurements

Colour index FUV-MUV

Important in the UV!
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Indirect Proxies

Usoskin 2017
https://ui.adsabs.harvard.edu/abs/2017LRSP...14....3U/abstract

Geomagnetic indices: quantify effects of geomagnetic activity (e.g.
Aurorae)

Cosmogenic isotopes, produce by the interaction of galactic cosmic rays
(GCRs) with atmospheric molecules.

Modulated by the solar magnetic field, depend on solar activity, Earth
climate and magnetic field.

14C (tree rings); °Be (ice cores)
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Cosmic rays
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Fig. 1. Cartoon illustrating some basics of the radionuclides '*C and '°Be in
the Earth’s system. Both radionuclides are produced in a very similar way by
nuclear reactions of cosmic ray particles with the atmospheric gases (3). After
production, their fate is very different (system effects). '°Be attaches to
aerosols and is transported within a few years to ground (34). "C oxidizes
to CO, and enters the global carbon cycle, exchanging between atmosphere,
biosphere, and the oceans (4).



Solar Indices: complex trends

Indices are often used to estimate magnetic field

and other properties. However:

** Non-linearity (saturation)

** Prone to Instrumental effects

** Trends may change during the activity cycle

** Trends may change from cycle to cycle

+* Correlation coefficients may depend on the
numerical techniques used to extract them
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Solar Irradiance



SOLAR SPECTRUM, VARIABILITY and
ATMOSPHERIC ABSORPTION
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Total Solar Irradiance
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Total Solar Irradiance also varies with the solar cycle,
typically one part in a thousand (e.g. Hickey et a. 1980)
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Top-down: UV radiation is absorbed in the higher layers of the
atmosphere, affecting ozone abundance, causing heating

and affecting atmospheric dynamics and circulation patterns
(e.g. Matthes et al. 2017)

Bottom-up: longer wavelengths reach the Earth surface and are
absorbed by Oceans, thus affecting global circulation and
precipitation patterns (Gray et al. 2010)
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Measurements of Solar Irradiance
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Importance of Modeling Stellar Variability

1) Stellar radiation affects exo-planet atmospheres and determine their habitability
(e.g. EUV radiation determines the stability of exoplanet atmospheres)

2) Affect the detectability of exoplanets introducing “noise”.

3) Affect our capability of determining the atmospheres of exoplanets and
presence of life.

(e.g. 02, 03, CH4, CO2: good bio-markers, but abundances are regulated by Lya,
FUV/NUV ratio. Affect transmission spectroscopy measurements!!! )

"[ulnderstanding of exoplanets is limited by measurements of
the properties of the parent stars, including [their]...emergent
spectrum and variability”

National Academies of Science, Engineering, and Medicine in its Exoplanet
Science Strategy Consensus Study Report, 2018



There is a general consensus on the fact that irradiance
variability is (predominantly) caused by changes of surface
magnetism (at least on solar cycle scales).
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Facular contribution dominates at longer tempora
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* The ratio between the size and the
horizontal optical depth determine whether
B~12kG B=0 a structure is bright or dark.

Pi T Dy Pe « Brightness also depends on wavelengths
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Three types of modeling:

Proxies only : sunspot number and area, plage area, CallK, Mg

Il core-to-wing, radio flux at 10.7 cm. The irradiance is fitted
via a set of proxies through multiple regression.

Proxies and modelling: the area coverage of magnetic features

is derived from observations and their brightness is
prescribed by (semi-empirical) atmosphere models

Forward modelling: employ results from numerical

simulations instead of proxies, radiative flux is derived from
models based on observations. (MOCASSIM)

Details depend on the spectral and temporal ranges that
the technique aims to reproduce.
None of them is universal!



Proxy Models

PROXY MODELS

SAN FERNANDO (e.g. Chapman et al. 1996, 2012, 2013)
Morrill et al. 2011

SCIA (Pagaran et al. 2011)

MGNM (Thuiller et al. 2012)

Tapping et al., 2007, 2013

Woods et al. 2000

Woods et al. 2015

MOCASSIM (Bolduc et al. 2012)

NRL-TSI/SSI -1/2 (e.g. Lean 2000, Coddington 2016)
EMPIRE (Yeo, Krivova, Solanki 2017)



Proxy Models

Naval Research Laboratory
Total Solar Irradiance
Spectral Solar Irradiance

V.2
(Lean et al. 1997; Lean 2000; Coddington et al. 2016)

TSI T(t)= T+AT(t)+AT(t)

SSl | (At) = Ig(A)+Al: (At) +Alg (A)

Q= baseline/reference value determined from measurements

Tq from TIM measurements
lo(A) from SORCE (<300 nm) /SOLSPEC (300-1000nm)/SIM measurements (1-
2.um)/Kurucz model (>2. um)



Proxy Models

INPUTS:
 Mgll index Bremen composite
* RGO and SOON sunspot area

* SIM/SOLSTICE measurements
* TIM measurements

O Facular and Sunspot contributions are determined by linear regression with SIM
measurements over rotational scales.

O For TSI, linear regression is comprises the whole mission as measurements are
considered more reliable

L Empirical correction factors applied to derived SSI coefficients to compensate for
long-term variations.

O Sum of spectral facular and sunspot contribution must match TSI facular and
sunspot contributions

‘ It provides uncertainties, detailed versioning, manual, consistency of inputs



Proxy Models

Total Solar Irradiance Observational Composite
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SEMI-EMPIRICAL MODELS

SATIRE-S/T (e.g. Krivova2003,Ye02014);

COSI (Shapiro et al. 2010; 2011);

SEA (Shapiro et al. 2011)

OAR(e.g. Ermolli et al. 2011; Ermolli et al. 2013);
SRPM (e.g. Fontenla 2011; Fontenla 2015)



Reconstruction of Solar (Stellar)
Irradiance variability
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SSI (Wm™ nm™)
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Semi-Empirical Models
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Historical reconstructions

PMIP4 Total Solar Irradiance
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Is there a long-trend in the quiet Sun component?

(W/m?)
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TSI (Wm2)
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Shortcomings of Irradiance reconstruction
models

All irradiance reconstructions depend on assimilating data, either proxies (e.g. sunspot
number, Mg Il c/w ratio, ... ), images (e.g. Ca Il H), or magnetograms (MDI, HMI, ...)

No model has true predictive power
Many models neglect NLTE effects (exceptions COSI, SRPM)
Models have one or more free parameters

The disagreement of the models in the UV is relevant for Earth climate
studies.(Thuiller et al. 2014) and for the characterization of stellar habitability zone.

Even small differences in the algorithms and assumptions may lead to significant
discrepancy

Semi-empirical models have not been tested sufficiently versus independent
measurements

Do not take into account 3D, small-scale, highly dynamic nature of solar
atmosphere



1 D models: Drawbacks

a) Semi-empirical models do not necessarily reproduce portions of the
spectrum, or variability other than those they were derived from.

(e.g. FAL2011 did not reproduce TSI variations)

b) Semi-empirical models do not necessarily reproduce
photometric observations

c) 1D static atmosphere models do not reproduce the
complex fine and dynamic nature of the solar
atmosphere

d) Discrepancy between irradiance reconstruction models

A SSI / ATSI [in percent]

-100 1

2007
150
100

50

-50

dvOo
AHOVAVIOS

0w zZwnwo
cC 3 >0
Qg:‘w

72
S on

30d0S

‘I WR-2002
‘Il susIM

/I NRLSSI

/Il SATIRE

‘Il cosl

I 0AR

‘Il SCIAMACHY
/Il SORCE
SORCE reanalysis|_

200-400

400-700 700-1000 1000-2430



Forward modeling: 3D MHD simulations

Box-in-a star regime

A small portion of the solar atmosphere is reproduced in a box.

Typically x,y contain few granules (10x10Mm), z extends between Stein & Nordlund 1998

12-15 Pressure scale height.

Solve time-dependent magneto-fluid-hydrodynamics equations for compressible fluids

* Energy
* Momentum
* Continuity

* Induction
e Gauss Law of Magnetism

Internal energy takes into account of ionization and dissociation processes
Radiative processes are very important in the energy budget.

Codes

STAGGER
MURaM
CO5BOLD
SolarBox
Pencil
Bifrost
Antares
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3D MHD models of the solar PHOTOSPHERE reproduce observations better than 1D models

Asplund et al. 2009
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First reconstruction of TSI

() Yeo et al. 2017

Synthetic

HMI

40 MURaM snapshots: 0G, 100G, 200G, 300G

Compute bolometric flux.

Simulate HMI magnetograms and Intensitygram.

TSl is reconstructed comparing synthetic data with daily HMI

observations.

Note that sunspot contribution is still represented using a 1D model.

L. m"E_‘ 1382 _(a] |
Bo!omgtric lgtensity =
Intensity (DN/s) (10" W/m’/stn) 2 yag0l
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‘ ‘ — - = 1a61 V ] :
Time series R rms difference (W,/m=) S |
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Model and VIRGO 0.968 0.0941 Month in 2012
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g 1361
5 1360
= 1359
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3D Models Drawbacks:

1) Computationally expensive-- Thanks to the development of supercomputers, and massive
parallelization, time sequences produced by different codes are publicly available or can be obtained under

request.

2) Radiative Transfer is prohibitive, especially in NLTE
However, LTE is possible using some numerical
approximations

Contrast

Norris et al. 2017 Atlas9 opacities
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Modeling the Chromosphere

An important fraction of the Spectral Irradiance variability that impacts the Earth atmosphere originates from the
chromosphere. Several Irradiance proxies are Chromospheric.

The chromosphere is a complex region where transition between different regime occur:
‘thick’> ‘thin’; plasma dominated—> B dominated; Local 2 Non-Local; partially=> fully ionized
Highly dynamic, conversion of modes

1)Numerical stability: Acoustic waves generated in the photosphere grow in amplitude. Shocks propagate, creating
sharp gradients

2)Time step: is determined by the Alfvén speed, order of milliseconds, | which is about 100 times smaller than in
the photosphere.

3)Non Local Radiative Transfer: Radiative losses require NLTE radiative transfer, and scattering is also important in
the energy balance.

4)Non-equilibrium processes: ionization and photodissociation are time-dependent.
5)Heat conduction is important at T>10000K

6)B dominated: Multi-fluid description is necessary.

Very few snapshots available to the community.
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Assignment

The purpose of this assignment is two fold: 1) make the students familiar with how to access solar irradiance
and solar indices dataset; 2) understand how the correlation between solar irradiance and other indices
changes with the indices and with time.

The LISIRD/LASP database is the most complete currently available (https://lasp.colorado.edu/lisird/).
Get familiar with it. Visualize and compare how different irradiance dataset, including spectral irradiance at
different spectral ranges, change with time.

-Download one of the available sunspot number dataset (no CSUN!).

-Download one of the available TSI time series.

-After interpolating on a common temporal grid study and compare: a) the correlation over the entire
dataset; 2) the correlation for different cycles; 3) the correlation for the ascending phases and the
descending phases.

-Download the sunspot area from and repeat the computations above.

-Note the differences and if possible coCSUNmpare with results published in the literature.


https://lasp.colorado.edu/lisird/

The Extended Solar Cycle

https://www.frontiersin.org/articles/10.3389/fspas.2018.00038/full

‘The latitudinal dependence of the solar activity markers smaller in scale than sunspots (like,
for example, bright points, granulation, diffuse coronal emissions, filaments/prominences, etc.)
show a narrow concentration of activity that appears at higher latitudes (around 55°) just after
solar maximum.’

B Merged SOHO/SDO G-Node & EUV Brightpoint Distribution [With Band Overlay]

S0 ._'

sof—
§' “E ,‘;" | " Buiiuds . . , i RS T il e .' - t ™ t 'W
g } B N Vil

————|

B




	Slide 1: Solar Irradiance
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Reconstruction of Solar (Stellar) Irradiance variability
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Assignment
	Slide 50

