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Overview
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• Solar radio emission 

interference

• Ionospheric effects  

and radio wave 

propagation

• HF communications

• Satellite Navigation 

(GNSS)

• Others radio systems

• Mitigations



Solar Radio Emission

3

13-Dec-2006 solar flare radio spectrum



Atmosphere Ionization
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Radio Wave Propagation in Plasma (or the Ionosphere)
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Plasma Oscillation & Frequency

The plasma frequency is the frequency at 

which the electrons in the plasma naturally 

oscillate relative to the ions and typically has 

values between 2 - 20 MHz for conditions in 

Earth's ionosphere.
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Radio Wave Propagation in Plasma (or the Ionosphere)
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D Region Absorption Wave Diffraction/Scintillation

Electrons randomly 

collide with neutral; Radio 

wave energy converts to 

electron kinetic energy 

and then to neutral 

thermal energy (i.e., 

neutrals are “heated”)

𝑑𝐴

𝑑𝑙
= 4.6 × 10−5

𝑛𝑒𝜐

2𝜋𝑓 2

Height-time-SNR map of ionospheric irregularities observed 

in the E and F regions by the Jicamarca radar



Over-the-horizon Radar/Radio Communication
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HF, located between 3MHz and 30MHz



NOAA SWPC D-region Absorption Prediction
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HF, located between 3MHz and 30MHz
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• US Global Positioning System

• Russian GLONASS

• European Galileo

• Chinese BeiDou

Trilateration with GNSS. Courtesy: gisgeography.com

Artist's conception of a 

GPS III satellite 

(lockheedmartin.com)

GPS Constellation (gps.gov)

What does GNSS offer?

• Position

• Navigation

• Timing

GNSS frequency bands. Courtesy. tualcom.com

Global Navigation Satellite Systems (GNSS)
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The key to Trilateration is RANGE, which is from the GNSS Radio Signal.

𝑺𝑳𝟏 𝑡 = 𝑃𝑐 𝐶 𝑡 𝐷 𝑡 cos(2𝜋𝑓𝐿1𝑡 + ∅)+others

𝜌𝐿1
𝑖 𝑡 = Ԧ𝑟Rx(𝑡) − Ԧ𝑟Tx

𝑖 (𝑡) + 𝑏Rx(𝑡)-𝑏Tx
𝑖 𝑡 + 𝐼 t + 𝑇(t) +휀(t)

Ionospheric Delay

GPS Signal and Measurements
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Radio Signal:
𝑺𝑳𝟏 𝑡 = 𝑃𝑐 𝐶 𝑡 𝐷 𝑡 cos(2𝜋𝑓𝐿1𝑡 + ∅)+others

𝜌𝐿1
𝑖 𝑡 = Ԧ𝑟Rx(𝑡) − Ԧ𝑟Tx

𝑖 (𝑡) + 𝑏Rx(𝑡)- 𝑏Tx 𝑡 + 𝐼 t + 𝑇(t) +휀(t)

Ionospheric Delay

Range:

“Indirect” Impact

Enhanced Ionospheric Effects:

• Refraction -> increased 𝐼 t

• Diffraction -> Scintillation!

“Direct” Impact +න 𝑃(𝑓)cos 2𝜋𝑓𝑡 + ∅𝑗 𝑑𝑓

How does Solar Flare/Radio Burst impact GPS/GNSS
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Left: Solar radio burst flux density on 6 December 2006 as measured at the Owens Valley Solar Array. 

Right: Response of a GPS receiver to the solar radio burst. The red line corresponds to C=N0 on 6 December 2006 and the blue line 

corresponds to the previous sidereal day. Cerruti et al. (2007).

Example of “Direct” Impact on GPS/GNSS
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Left: Solar radio burst flux on 6 December 2006 as measured at the Owens Valley Solar Array. Cerruti et al. (2008).

Right: IGS GNSS Network on December 6, 2006. Cerruti et al. (2007).

Example of “Direct” Impact on GPS/GNSS
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Ionospheric Refraction

Satellite velocity

Plasma turbulence

Ionospheric Scintillation

Ionosphere Refractive Index

Simplified from Appleton-Hartree equation.

Ionospheric Delay:  𝐼 =
40.3
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𝑆
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𝛿𝑡2

• Rate of TEC Index (ROTI)

cos(2𝜋𝑓𝐿1𝑡 + ∅1 (𝑡))
+ cos(2𝜋𝑓𝐿1𝑡 + ∅2 (𝑡))

= 2 cos 2𝜋𝑓𝐿1𝑡 +
∅1 𝑡 + ∅2 𝑡

2
cos(

∅1 𝑡 − ∅2 𝑡

2
)Courtesy: betime.be

Solar Flare “Indirect” Impact on GPS/GNSS

https://en.wikipedia.org/wiki/Appleton%E2%80%93Hartree_equation
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X9.3 flare on September 06, 2017

Example of “Indirect” Impact on GPS/GNSS
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X9.3 flare on September 06, 2017

Example of “Indirect” Impact on GPS/GNSS
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X9.3 flare on September 06, 2017 Precise Point Positioning 

Example of “Indirect” Impact on GPS/GNSS



18

▪ Solar radio bursts with severe impacts on 

GNSS do not happen frequently. 

▪ Solar radio bursts challenge the ability of the receiver 

by significantly decreasing the carrier-to-noise ratio.

Histogram illustrating the frequency of solar 

radio bursts from 1 – 2 GHz at given 

intensities. (Courtesy: Dale Gary, NJIT.)

▪ Solar flares enhance the atmosphere ionization (EUV & X-

ray), increase the ionospheric error in GNSS range 

measurements, and may also cause scintillation. 

▪ GNSS networks can be used to monitor 1.1-

1.6 GHz Solar radio bursts. 

GNSS estimated solar 

radio burst at ~1.6 GHz. 

Cerruti et al. (2007).
▪ The scintillation impacts from solar flares are considered 

mild comparing with those from ionosphere 

geomagnetic perturbations. 

Summary of Solar Flare Impacts on GNSS
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L1

L2
L5

An Example of a Real Scintillation



Low Latitude 

Scintillation 

Example
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Peru 

3/11/2013 

13:30UTC
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Scintillation Characteristics

High vs Low Latitude: Atmospheric Disturbance Diurnal Pattern
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Scintillation 

Characteristics: 

Geomagnetic 

Dependency
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Scintillation 

Characteristics: 

Geomagnetic 

Dependency
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August 2010 – July 2012

HAARP
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High Latitude Scintillation Spatial Distribution
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Equatorial Scintillation

Diagram describing the development of the equatorial ionospheric anomaly, the magnetic and 

electric fields that combine to produce it. 

(1) The E-region dynamo, driven by neutral wind-E-layer interaction, produces an eastward 

electric field across the dayside. 

(2) These fields are transmitted upward along magnetic field lines into the F-region, causing 

the plasma to ExB drift upward (3, 4) at the magnetic equator. 

(5) Through diffusion and gravitational sedimentation, the upward lifted plasma settles along 

the magnetic field to locations north and south of the equator. 

Immel et al. 2006
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ROTI: Ionosphere Plasma Disturbance 
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Position errors

Ionosphere Disturbance Impact on PVT Services
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Ionosphere 
Disturbance 
Impact at 
LEO

Pezzopane et al. 2021
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GPS P(Y) code Signal of PRN 5 received by IGS BAIE

Increase Signal 

Transmission Power

The New Flex Power Mode: 

From GPS IIR-M and IIF Satellites

Warning System for GNSS 

Users

Improve GNSS Receiver 

Design and Signal Tracking

• Higher quality 

oscillator

• Robust tracking loop 

design

• Adaptive filter tuning 

and integration time 

adjustment

• Integration with 

external sensors, 

such as IMU.

Mitigation of Space Weather Impacts on GNSS
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