COLLAGE 2023

Lecture 08: Space Weather Impact on Radio Waves

Yang Wang

Smead Department of Aerospace Engineering Sciences

University of Colorado Boulder

Email: yang.wang-2@colorado.edu

Source materials partially from Jade Morton, Thomas Berger, and Robert Marshall

COLLAGE 2023 / ASEN-5519: Space Weather Overview

Overview

Solar Flares

Sunspots/Solar Cycle

F10.7 cm Radio Emissions

Coronal Mass Ejections

Solar Radiation Storm

Solar Wind

Aurora Ionosphere Total Electron Content Ionospheric Scintillation Ground Induced Currents

Geomagnetic Storms

Magnetosphere

- Solar radio emission interference
- Ionospheric effects and radio wave propagation
- HF communications
- Satellite Navigation (GNSS)
- Others radio systems
- Mitigations

Solar Radio Emission

Atmosphere Ionization

Radio Wave Propagation in Plasma (or the lonosphere)

Plasma Oscillation & Frequency

The plasma frequency is the frequency at which the electrons in the plasma naturally oscillate relative to the ions and typically has values between 2 - 20 MHz for conditions in Earth's ionosphere.

Index of Refraction

 $X = \left(\frac{f_p}{f}\right)^2 \ll 1$ **Simplified Appleton-Hartree Equation** $Y = \frac{J_g}{f} \ll 1$ $n_{\varphi} = 1$ $\frac{1 - \frac{Y^2 \sin^2 \theta_B}{2(1 - X)}}{1 - \frac{Y^2 \sin^2 \theta_B}{2(1 - X)}} \pm \sqrt{\frac{Y^4 \sin^4 \theta_B}{4(1 - X)^2}} + Y^2 \cos^2 \theta_B$ $n_{\varphi} \approx 1 - \frac{X}{2} \pm XY |\cos \theta_B| - \frac{1}{4}X \left(\frac{X}{2} + Y^2 (1 + \cos^2 \theta_B)\right)$ 2^{nd} order 3^{rd} 3rd order Vacuum $n_j \gg 1 - \frac{X}{2} \gg 1 - \frac{e^2}{2me_0 f^2} N_e = 1 - 40.3 \frac{N_e}{f^2}$ $f_g = \frac{|e|B}{2\pi m} \approx 28 \times 10^9 B \approx 1 MHz$

Radio Wave Propagation in Plasma (or the lonosphere)

D Region Absorption

Wave Diffraction/Scintillation

Electrons randomly collide with neutral; Radio wave energy converts to electron kinetic energy and then to neutral thermal energy (i.e., neutrals are "heated")

$$\frac{dA}{dl} = 4.6 \times 10^{-5} \frac{n_e v}{(2\pi f)^2}$$

 $\langle \nu_{e,O} \rangle = 1.37 \times 10^{-16} N(O) (1 + 3.32 \times 10^{-4} T_e) T_e^{\frac{1}{2}}$ $\langle \nu_{e,N_2} \rangle = N(N_2) (4.02 + 2.37 (1 - 1.54 \times 10^{-4} T_e) T_e) \times 10^{-17}$

Height-time-SNR map of ionospheric irregularities observed in the E and F regions by the Jicamarca radar

Over-the-horizon Radar/Radio Communication

HF, located between 3MHz and 30MHz

6

X-Ray Event

0

 $\langle \nu_{e,O} \rangle = 1.37 \times 10^{-16} N(O) (1 + 3.32 \times 10^{-4} T_e) T_e^{\frac{1}{2}}$

12

Time (Hours)

Lowest Usable Frequency

18

24

NOAA SWPC D-region Absorption Prediction

HF, located between 3MHz and 30MHz

Voderate X—ray flux Product Valid At : 2017—09—06 09:28 UTC Minor Proton Flux NOAA/SWPC Boulder, CO USA

Global Navigation Satellite Systems (GNSS)

US Global Positioning System

- Russian GLONASS
- European Galileo
- Chinese BeiDou

What does GNSS offer?

University of Colorado erger, Spring 2023 Boulder

- **P**osition
- Navigation
- **T**iming

ASE

GPS Signal and Measurements

The key to Trilateration is RANGE, which is from the GNSS Radio Signal.

How does Solar Flare/Radio Burst impact GPS/GNSS

Radio Signal:

 $\overline{S_{L1}(t)} = \sqrt{P_c} C(t) D(t) \cos(2\pi f_{L1}t + \emptyset)$ +others

"Direct" Impact

$$+\int \sqrt{P(f)}\cos(2\pi ft + \phi_j)df$$

<u>Range:</u> $\rho_{L1}^{i}(t) = \left|\vec{r}_{Rx}(t) - \vec{r}_{Tx}^{i}(t)\right| + b_{Rx}(t) - b_{Tx}(t) + I(t) + T(t) + \varepsilon(t)$ **Ionospheric Delay**

Enhanced Ionospheric Effects:

- Refraction -> increased *I*(t)
- Diffraction -> Scintillation!

"Indirect" Impact

Example of "Direct" Impact on GPS/GNSS

Left: Solar radio burst flux density on 6 December 2006 as measured at the Owens Valley Solar Array.

Right: Response of a GPS receiver to the solar radio burst. The red line corresponds to C=N₀ on 6 December 2006 and the blue line corresponds to the previous sidereal day. Cerruti et al. (2007).

Example of "Direct" Impact on GPS/GNSS

Left: Solar radio burst flux on 6 December 2006 as measured at the Owens Valley Solar Array. Cerruti et al. (2008). Right: IGS GNSS Network on December 6, 2006. Cerruti et al. (2007).

Solar Flare "Indirect" Impact on GPS/GNSS

Example of "Indirect" Impact on GPS/GNSS

University of Colorado

Boulder

X9.3 flare on September 06, 2017

Example of "Indirect" Impact on GPS/GNSS

Maximal Rate of TEC index - 1 min update 2017-09-06T11:56:00 Maximal Rate of TEC index - 1 min update 2017-09-06T11:57:00 20*W 0* 10°E 20*E 30°E 40°E 10°E 20°E 30°E 40°E 10°W 75* а 65*N 65°N 65*N 55°N 45°N 45°N 451 45*8 35°N 20°W 10°W 0* 10°E 20°E 30*E 40*E 20°W 10°W 0* 10°E 20*E 30*E 40°E 0.00 0.25 0.50 0.75 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.25 1.50 1.75 1.00 1.00 2.00 ROTI (max) [TECU/min] ROTI (max) [TECU/min] 2017-09-06T11:58:00 2017-09-06T11:59:00 Maximal Rate of TEC index - 1 min update Maximal Rate of TEC index - 1 min update 20*E 30°E 30°E 40*E 20°W 10°W 10°E 40°E 20°W 10°E 20°8 75°1 65°N 65*1 65°N 65°N 55*N 55°N 55°N 45°N 45°N 35°N 20*W 10°W 10°E 20°E 30°E 40°E 20°W 10°W 10°E 20°E 30°E 40°E 1.50 1.75 0.25 0.50 1.50 1.75 0.00 0.25 0.50 0.75 1.00 1.25 2.00 0.00 0.75 1.00 1.25 2.00 ROTI (max) [TECU/min] ROTI (max) [TECU/min]

Example of "Indirect" Impact on GPS/GNSS

Boulder

Summary of Solar Flare Impacts on GNSS

- Solar radio bursts with severe impacts on GNSS do not happen frequently.
- Solar radio bursts challenge the ability of the receiver by significantly decreasing the carrier-to-noise ratio.
- Solar flares enhance the atmosphere ionization (EUV & Xray), increase the ionospheric error in GNSS range measurements, and may also cause scintillation.
- The scintillation impacts from solar flares are considered mild comparing with those from ionosphere geomagnetic perturbations.
- GNSS networks can be used to monitor 1.1-1.6 GHz Solar radio bursts.

An Example of a Real Scintillation

Low Latitude Scintillation Example

Peru 3/11/2013 13:30UTC

Scintillation Characteristics

High vs Low Latitude: Atmospheric Disturbance Diurnal Pattern

Scintillation Characteristic

Geomagnetic Dependency

University of Colorado Boulder

Scintillation Characteristics:

Geomagnetic Dependency

High Latitude Scintillation Spatial Distribution

Equatorial Scintillation

electric fields that combine to produce it.

- (1) The E-region dynamo, driven by neutral wind-E-layer interaction, produces an eastward electric field across the dayside.
- (2) These fields are transmitted upward along magnetic field lines into the F-region, causing the plasma to ExB drift upward (3, 4) at the magnetic equator.
- (5) Through diffusion and gravitational sedimentation, the upward lifted plasma settles along the magnetic field to locations north and south of the equator.

Immel et al. 2006

Ionosphere Disturbance Impact at LEO

Pezzopane et al. 2021

Geographic longitude

Mitigation of Space Weather Impacts on GNSS

Increase Signal Transmission Power

The New Flex Power Mode: From GPS IIR-M and IIF Satellites

GPS P(Y) code Signal of PRN 5 received by IGS BAIE

Warning System for GNSS Users

SRB WARNING SYSTEM FOR GNSS APPLICATIONS IN EUROPE

Contact: <u>iono@oma.be</u>

To receive real-time alert emails, please contact us to be added to the mailing list.

Last update : 2017-09-06 13:30:00 UTC	LI	L2
Last 15min		
Last 24h		
Last week		

Events of the last 30 days:

Frequency	Date of the maximum fade	Maximum fade (in dB-Hz)	Beginn
L1	2017-09-06 13:07:30	-1±0.5	2
L1	2017-09-06 13:05:00	-1±0.52	2
L2	2017-09-06 13:03:30	-2.75±0.91	² N
L2	2017-09-06 12:20:30	-1±0.52	Ξ
L2	2017-09-06 12:08:30	-2±1.08	2 =
L2	2017-09-06 12:02:30	-6.25±1.6	i p €
LI	2017-09-06 12:01:30	-1±0.61	2

Improve GNSS Receiver Design and Signal Tracking

- Higher quality
 oscillator
- Robust tracking loop
 design
- Adaptive filter tuning and integration time adjustment
- Integration with external sensors, such as IMU.

28