COLLAGE 2023

Lecture 09: Ionosphere Observation with Radio Waves

Yang Wang
Smead Department of Aerospace Engineering Sciences
University of Colorado Boulder
Email: yang.wang-2@colorado.edu

Source materials partially from Jade Morton and Robert Marshall
Outline

- Overview of ionosphere observation approaches
- GNSS network-based ionosphere observation and monitoring
- GNSS space-based ionosphere observations
 Ionosphere Irregularities: Temporal Evolution

Plumes or Plasma bubbles

- Electron Density
- Ion and Electron Temperature
- Ion Drift
- Ionospheric Composition

Jicamarca, Peru, vertical backscatter at 3m 3/21/1979

Fig. 2—Spectra for mixtures of O⁺, H⁺, and H⁺.

Gordon, 1964
World incoherent scatter radars
Ionosphere Irregularity: Vertical Structure

Ionosonde

HF typically 0.5–23 MHz or 1–40 MHz
Ionosphere Irregularity:
Vertical Structure

Altair radar on Kwajalein island
0.96m wavelength

PLUMEX I rocket

Ionosphere Irregularity: Horizontal Structure

NASA's Ionospheric Connection Explorer (ICON)

- Understand drivers of ionospheric variability
- Explain how energy / momentum from lower atmosphere reach the space environment
- Explain how drivers create extreme conditions observed during solar-driven geomagnetic storms

Main instruments:
- **MIGHTI** is a Michelson Interferometer to measure winds and temperatures
- **FUV** is an FUV imager; observes UV emissions of N₂ and O to determine O/N₂ ratio
- **EUV** images 83.4 nm emission from O; resonantly scattered by O+: gives ion density
- **IVM** is the ion velocity meter; uses a Retarded Potential Analyzer (RPA) to measure relative velocity of ions, therefore winds, as well as temperature and density
GNSS Networks

IGS Global Ionosphere Map (GIM)

http://ionosphere.cn/
Outline

• Overview of ionosphere observation approaches
• GNSS network-based ionosphere observation and monitoring
• GNSS space-based ionosphere observations
Simplified Appleton-Hartree Equation

\[f_g \approx 1 \text{MHz} \quad f_p \leq 10 \text{MHz} \]

At GPS frequency, \(f \sim \text{GHz} \):

\[
X = \left(\frac{f_p}{f} \right)^2 \ll 1 \quad Y = \frac{f_g}{f} \ll 1
\]

\[
n_\phi = 1 - \frac{X}{1 - \frac{Y^2 \sin^2 \theta_B}{2(1 - X)} \pm \sqrt{\frac{Y^4 \sin^4 \theta_B}{4(1 - X)^2} + Y^2 \cos^2 \theta_B}}
\]

\[
n_\phi \approx 1 - \frac{X}{2} \pm XY |\cos \theta_B| - \frac{1}{4} X \left(\frac{X}{2} + Y^2 (1 + \cos^2 \theta_B) \right)
\]

Vacuum 1\(^{\text{st}}\) order 2\(^{\text{nd}}\) order 3\(^{\text{rd}}\) order

\[
n \quad 1 \quad \frac{X}{2} \quad 1 \quad \frac{e^2}{2m_0 f^2} N_e = 1 \quad 40.3 \frac{N_e}{f^2}
\]
Ionosphere Disturbance Impact on Mid-latitudes

Challenges in Measuring Ionospheric Irregularities

1. Availability

 Receivers cease to function if GNSS signal traverse irregularities
 → Data are not available when needed most!

2. Accuracy

 \[(\text{iono} + \text{other}) \times h(t) = \text{Observed Effects}\]

 Ionosphere effects ≠ Observed Effects
Availability Issue: March 17-18, 2015 St. Patrick’s Day storm

Accuracy: Scintillation Indices

Phase scintillation index: \(\sigma_\phi = std \left(detrend(\phi_{s,k}) \right) \)

Amplitude scintillation index: \(S_4 = \sqrt{\frac{\langle SI^2 \rangle - \langle SI \rangle^2}{\langle SI \rangle^2}} \)

Signal intensity (power): \(SI = \frac{SI_{raw}}{SI_{trend}} \)

\(SI_{raw} = NBP - WBP \)

Narrowband power: \(NBP = \left(\sum_{i=1}^{M} I_i \right)^2 + \left(\sum_{i=1}^{M} Q_i \right)^2 \)

M: number of correlation blocks over a selected period
Typical setting: \(T_I = 1 \text{ms} \rightarrow M = 20; \ T_I = 10 \text{ms} \rightarrow M = 2 \)

Wideband power: \(WBP = \sum_{i=1}^{M} I_i^2 + \sum_{i=1}^{M} Q_i^2 \)

Rate of TEC Index (ROTI): \(ROTI = \sqrt{E \left[\frac{|TEC(t + \delta t) - TEC(t)|^2}{\delta t^2} \right]} \)
Global SDR Data Collection Network

>2 PB data and growing
- Dedicated data center and processing facility
- Machine learning, data science

University of Colorado Boulder
Low Latitude Scintillation Example

Peru
3/11/2013
13:30UTC
Plasma Velocity Estimation

Ionosphere TEC and Disturbance Forecasting

Machine Learning Forecast Framework Using ConvLSTM:
(Convolutional Long Short-Term Memory)

(Shi et al., 2015)

Input/Output

<table>
<thead>
<tr>
<th>Input/Output</th>
<th>TEC Map: Background Ionosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTI Map: Ionosphere Disturbances</td>
<td></td>
</tr>
</tbody>
</table>
Ionosphere Disturbance Forecasting with Ground GNSS Networks

- **GNSS Receivers**
- **IPP**
- **Raw ROTI**
- **Interpreted ROTI**

- Lead time steps: 10 minutes
- Resolution: 1° Latitude by 1° Longitude
- Select data of storm days with SYM-H index < -40 nT
Ionosphere Disturbance Forecasting Results:

Ionosphere Disturbance Forecast Results:

(Liu et al., 2021)
Outline

• Overview of ionosphere observation approaches
• GNSS network-based ionosphere observation and monitoring
• GNSS space-based ionosphere observations
Filling the Data Gap: LEO Satellite-Based Observations

GNSS Radio Occultation (GNSS-RO)

Progression of Tangent Point for a Setting (desending) Occultation

Tangent point

V_{GPS}

V_{LEO}

cosmic.ucar.edu

GNSS Reflectometry (GNSS-R)

BDS

GLONASS

QZSS

Calm Ocean

Moist Surface

Sea Ice

GPS

Galileo

LEO

LEO

LEO

LEO

University of Colorado Boulder
Yue, X., Wan, W., Liu, L., Liu, J., Zhang, S., Schreiner, W. S., ...
& Hu, L. (2016). Mapping the conjugate and corotating storm-enhanced
density during 17 March 2013 storm through data assimilation.
GNSS RO Ionosphere Retrieval

Non-Occulting Reference
GPS Satellite

Non-Occulting POD
GPS Satellite

0.1 Hz
L1 & L2

LEO Satellite
MicroLab - 1

1 Hz
L1 & L2

1 Hz LC

Occulting GPS Satellite

1 Hz
L1 & L2

1 Hz LC

Orbit Altitudes
LEO Satellite = 735 km
GPS Satellite = 20,231 km

GNSS-RO TEC Retrieval

\[
T_E C \approx \frac{1}{\beta} \Delta \phi_{12} + \Delta B_{12}
\]

\[
\frac{1}{\beta} = \frac{1}{40.3} \frac{f_2^2 - f_1^2}{f_1^2 f_2^2}
\]

How to calibrate/estimate bias?

- GNSS satellite bias: use ground receiver network estimations, IGS products
- LEO satellite receiver bias:
 - Find geometries that tend to result in minimum TEC along a raypath and use climatological models of ionosphere to estimate the small Ne and TEC in the region. Example: at high latitudes where the ray path traverses regions of open magnetic fields near the poles.
 - Set TEC to 0 along minimum TEC ray path
 - Rely on receiver built-in calibration mechanism
Ionosphere Ne Profile Retrieval

Assumptions: Straight ray path and spherical symmetry
(Ne varies only with radius or altitude, not horizontally along the ray path)

\[TEC = \int_{\text{raypath}} Ne(s)ds \]

\[s(r) = \sqrt{r_0^2 - r_t^2} - \sqrt{r^2 - r_t^2} \]

\[\frac{ds(r)}{dr} = \frac{r}{\sqrt{r^2 - r_t^2}} \]

\[TEC(r) = 2 \int_{r_0}^{r_t} \frac{rNe(r)}{\sqrt{r^2 - r_t^2}} dr \]

\[Ne(r) = \frac{1}{\pi} \int_{r}^{r_0} \frac{dTEC}{dr_t} \frac{1}{\sqrt{r_t^2 - r^2}} dr_t \]

Mannucci et al., Chapter 31 GNSS Radio Occultation, PNT21, 2020
Ionospheric Observations from GNSS-RO

Ne profiles, TEC, Scintillation

GNSS-R Phase-Delay Altimetry

Arctic and Antarctic: High Rate Coherent Reflections

42% over sea ice. 75% over 1st year ice

Example TEC Retrieval from Spire Data: Kara Sea

Ionosphere Structure Observation GNSS-R

(a) 2022-08-17T03-11-54
(b) VTAC (TECU)
(c) 2022-08-17T17-46-17
(d) VTAC (TECU)

SP

IP1

IP2

TEC

GNSS-R

IP1 - Madrigal

GNSS-R

IP2 - Madrigal

Time (s)

University of Colorado
Boulder
GNSS-R Monitoring Ionospheric Disturbances