
 Jan. 21, 2022

 Installing and making sure that Hazel2 works

 For most of our exercises during the “HeI diagnostics” school, we will be using the
 HAZEL code (from HAnle and ZEeman Light) written by Andres Asensio Ramos and
 described in the paper: Asensio Ramos et al., 2008, ApJ 683, 542. In particular, we’ll be
 using the Hazel 2.0 version, written in python.

 All of the following has been taken from the extensive documentation provided by
 Andres:

 https://aasensio.github.io/hazel2/started/installation.html

 We note that some small things are likely to be different, e.g., the version of python
 compared to the guide, etc. But these are (or should be) minor differences. If you
 encounter any problems during installation and testing, you can ask us for help at the
 discord server, or during the office hours, as indicated in the email.

 We (and the author of the code) suggest using so-called python environments for
 running Hazel2. An environment is like a small, local, mini-filesystem, where you can
 install specific versions of packages. It requires having the so-called conda, which is a
 python (and not only python!) package / environment manager.

 First, you will need anaconda, or miniconda installed. This will work in Linux, MacOS, as
 well as in windows (more details below). After installing anaconda / miniconda, go
 through the following steps:

 MacOS:

 To the best of our knowledge, it is impossible to run hazel2 on MacOS machines without
 first installing xcode or at least the command line tools. These packages allow you to
 run compilation commands in your terminal, and without them you will not be able to
 build hazel2. If you don’t have them already, command line tools are lighter and faster
 to install, so before everything else, start by installing that, following this link:

 https://mac-how-to.gadgethacks.com/how-to/install-command-line-d
 eveloper-tools-without-xcode-0168115/

https://aasensio.github.io/hazel2/started/installation.html
https://mac-how-to.gadgethacks.com/how-to/install-command-line-developer-tools-without-xcode-0168115/
https://mac-how-to.gadgethacks.com/how-to/install-command-line-developer-tools-without-xcode-0168115/

 If you do not have privileges to do that (e.g. you are using your institute’s computer), it is
 a good time to get in touch with them now and ask them to do that for you.

 Provided that went fine, open your terminal and do the following:

 Create an environment for running Hazel2 (the python version does not matter as long
 as it is a python 3; choose whatever is the latest), activate it and install the necessary
 packages (the 3rd and 4th line are one big command):

 conda create -- name hazel_env python = 3.9
 conda activate hazel_env
 conda install – c conda – forge cython numpy h5py tqdm scipy astropy
 mpi4py configobj gfortran_osx – 64 clang asciitree
 conda install - c conda - forge git ipython jupyter matplotlib

 Important: Sometimes the “-” signs will get copied improperly, resulting in errors. If you
 get any weird behavior, just type out that argument (e.g. --name) instead of copying it.
 Also clang might have to be replaced with clang_osx-64, or clangxx_osx-64.

 Linux and Windows:

 If you are a windows user, it seems that the easiest path is to install the so called Linux
 Subsystem for Windows (WSL), and follow the steps below (your subsystem now
 behaves like an independent Linux computer). To install WSL, you can follow, for
 example, this guide:

 https://docs.microsoft.com/en-us/windows/wsl/install

 The guide does mention multiple possible distributions of Linux. It is simplest to just use
 the most popular one - Ubuntu. After that, you want to open your Ubuntu installation and
 follow these steps:

 First, install conda or miniconda in your Linux (or WSL):

 https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

 After that, in a terminal, execute the following (3rd, 4th, 5th line are one big command):

 conda create -- name hazel_env python = 3.9
 conda activate hazel_env

https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

 conda install - c conda - forge cython numpy h5py tqdm scipy

 astropy mpich mpi4py configobj gfortran_linux - 64 gcc_linux - 64

 asciitree

 conda install - c conda - forge git ipython jupyter matplotlib

 Installing and testing Hazel2 (same for all three operating systems)

 Finally, download and install Hazel2! Open a terminal, go to a folder where you keep
 your codes and do the following. A lot of compiling (as well as warnings) will follow, but
 do not worry. We are looking mostly for errors. If these happen, make a note and come
 to us!

 conda activate hazel_env
 git clone https://github.com/aasensio/hazel2
 cd hazel2
 python setup . py install

 (If you continue using hazel2, you can update to a newer version at any point using:
 git pull
 python setup . py install)

 To finally check if everything is ok, we suggest:

 cd ~/
 ipython

 And after ipython is running, do:

 import hazel

 If this works fine, it means the code is properly installed! (Note: in your home folder, or
 wherever you are when you run ipython and try to import hazel, there must not be
 another folder named hazel, or python will simply import its contents whatever they
 might be, instead of the hazel2 package).

https://github.com/aasensio/hazel2

 To try out if notebooks work and if they can properly see hazel2, first exit the ipython
 session:

 exit()

 Then you can open a notebook, by typing:

 jupyter notebook

 Your browser will appear, showing the contents of the directory you are in. Above, to the
 right, from the list of the files, click “new” and click “python3”, it will open a new
 notebook. Copy and paste the following in the cell that appeared:

 import hazel
 import matplotlib.pyplot as plt
 mod = hazel . Model(working_mode = 'synthesis')
 mod . add_spectral({ 'Name' : 'spec1' , 'Wavelength' : [10826 , 10833 , 150], 'topology' : 'ch1' ,

 'LOS' : [0.0 , 0.0 , 90.0], 'Boundary condition' : [1.0 , 0.0 , 0.0 , 0.0]})
 mod . add_chromosphere({ 'Name' : 'ch1' , 'Spectral region' : 'spec1' , 'Height' : 3.0 , 'Line' :
 '10830' , 'Wavelength' : [10826 , 10833]})
 mod . setup()
 mod . synthesize()

 f, ax = plt . subplots(nrows = 2 , ncols = 2)
 ax = ax . flatten()

 for j in range (5):
 # Vector of parameters are (Bx,By,Bztau,v,deltav,beta,a) and then the ff
 mod . atmospheres['ch1'] . set_parameters([0.0 , 0.0 , 100.0 * j, 1.0 , 0.0 , 8.0 , 1.0 , 0.0], 1.0)
 mod . synthesize()

 for i in range (4):
 ax[i] . plot(mod . spectrum['spec1'] . stokes[i,:])

 plt . show()

 And then press shift+Enter. This ‘executes’ the cell. After a while, you should see
 something like this. If you do, that means your Hazel2 works. Enjoy!

