Near InfraRed Tunable Filter (NIRTF) for a 2nd Generation Instrument of DKIST A. Asai¹, K. Ichimoto¹, T. Yokoyama¹, S. Nagata¹, S. Ueno¹ Y. Katsukawa², Y. Suematsu², Y. Hanaoka², M. Kubo², Y. Kawabata² T. Anan³ - 1) Kyoto University - 2) National Astronomical Observatory of Japan - 3) National Solar Observatory ## Describe the highest priority science goals to be address: ## Understand dynamic solar phenomena taking place on the scale of active regions 1. Measurements of \overrightarrow{B} in the corona relating to plasma dynamics Chen et al. 2020 Tomczy Tomczyk et al. 2007 Waves - 2. Measurement of \vec{B} in chromosphere to investigate flare triggers - 2-1. Extrapolation of the coronal \vec{B} => Study MHD instabilities - 2-2. Identify flare trigger phenomena 3. Measurement of \overrightarrow{B} in prominences to study MHD turbulence NAOJ/JAXA Inoue et al. 2018 4. Measurement of \overrightarrow{B} & E in prominences or jets to study magnetic diffusion Develop a comprehensive ranked research strategy that provides an ambitious but realistic approach to address these goals that includes ground- and space-based investigations as well as data and computing infrastructure to support the research strategy ## Develop a large-aperture near infrared tunable narrow-band filter for a DKIST 2nd generation instrument | Item | Performance | |------------------------------------|---| | Spectral coverage | 1 μm to 1.6 μm Fe I 1.564 μm (Photosphere V and B [Zeeman]) He I 1.083 μm (Chromosphere V and B [Zeeman+Hanle]) H I 1.020 μm (P7) /1.094 μm (P6) (Chromosphere V, B, and E [Zeeman+Stark]) Fe XIII 1.074 μm (Corona V and B [Zeeman+Hanle]) | | Spectral resolution | $\lambda/\Delta\lambda_{FWHM}$ > 50,000 for the photosphere and the chromosphere $\lambda/\Delta\lambda_{FWHM}$ > 8,000 for the corona | | Spectral scan | Cover spectral line widths • >0.3 nm needed for Fe XIII | | Spatial resolution & Field-of-view | For the photosphere and the chromosphere 0.1" resolution with FOV > 60" (to cover super-granulation and a sunspot) For the off-limb corona and a prominence 0.2" resolution with FOV > 150" (to trace MHD wave propagation) Consider an option to switch between narrow and wide FOVs | - How the WP links to the statement of task: The structure of the Sun and the properties of its outer layers in their static and active states - Category: Infrastructure? - Primary topic: Solar Physics? - Secondary topic: Space Weather Research to Operations to Research Loop?