Discovering the causes of fine-scaled coronal structure and the basis of coronal heating

Ground-Based Coronal Physics in the Next Decade: The DKIST View

Tom Schad¹, Andre Fehlmann¹, Sarah Jaeggli¹, Jeff Kuhn², Haosheng Lin², Lucas Tarr¹

¹National Solar Observatory; ²University of Hawaii - Institute for Astronomy

8 July 2022 - NSO Scientists White Paper Meeting

Science Drivers

- What governs the fundamental structure, composition, and evolution of the corona?
- How are the corona and solar wind heated and accelerated?
- How is energy stored, released, and propagated during space weather events?

The Coronal "Veil" Malenoshenko+ 2021

Old Questions Renewed

- The active corona is highly structured in loop-like features (see NASA/Hi-C image top left).
 - Are these 1d conduits of magneto-convective energy?
 - o 1d scaling laws and B field extrapolations to constrain heating (see, e.g., Ugrate-Urra+ 2019)
 - Are loops heated by nano-flares? Wave dissipation? Other?
- Malenoshenko+ 2021 suggests loops are projected corrugated structures.
 - Single and multi-vantage point of loops suffers line-of-sight ambiguities
- New avenues to address this question:
 - High resolution coronal forbidden line polarimetry: Schad & Dima (2021)
 - High resolution coronal rain polarimetry (He I + Ca II): Schad+ 2016, 2019, Kurizde+ 2019

Science highlight: coronal Loops or Veils?

Malenshenko+ (2021)

- Synthetic loops can be traced to wrinkled sheet-like structures in MURAM.
- Loops may not be the circular or elliptical structures we idealize.
- Can be tricky to distinguish observationally.

Synthetic polarized contribution functions at right using techniques of Schad & Dima (2020. High dynamic range polarimetry at near diffraction limited-scales helps constrain simple vs complex structuring.

Decadal Survey White Paper Recommendations

- DKIST will remain the high resolution coronagraph with the high "effective" coronal aperture for active region targets during the next decade.
- Techniques for boosting spectropolarimetric observing efficiency need to be advanced
 - Additional slit multiplexing for simultaneous spectral coverage. Image slicers and/or IFUs for coronal use cases

 - Infrared Fabry Perot or Lyot Filter instrument
- Potential in coronal linear polarization imaging
 - Multi-temperature linear polarization imaging for dynamic field topology constraints
 - Ultra high bandpass filters + large format micro-polarizer cameras
- Facility maintenance optimization and improvements
 - In-situ washing operations will continually be improved with experience gained.
 - Alternative cleaning methods/infrastructure TBD?
- Other related science areas and technologies
 - Mid-infrared imaging of flare continua [> 5 um]. TIDES [Penn et al.]
 - Low spectral resolution broad-band IFU spectroscopy for flares
- Advance frontier in coronal spatial resolution
 - Daytime laser guide stars for adaptive optics [Beckers 2002] / ORCAS