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Convolution çè Deconvolution 

Image Quality Metrics

Figure 1. Four examples of the solar atlas profile convolved with a instrumental profile with a FWHM of 0.096 Å.

6. WIDTH VS. FILTERGRAMS

• mosaic

• limb

• full disk

i(u, v) = i0(u, v)⇥MTF (u, v) (1)
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Convolution Example 

MURAM simulation, 5000 Å, 0.013”/pixel 

4-meter Diffraction Limited 1.6-meter Diffraction Limited 
 



Deconvolution Example 

4-meter Diffraction Limited 1.6-meter Diffraction Limited 
Deconvolved

MURAM simulation, 5000 Å, 0.013”/pixel 



Where does the MTF do the most damage? 

Courtesy Jose Marino 
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Our Nemesis – Noise! 

Noise is present in any measurement 
Two key sources: 

Read Noise = dN(x,y) – constant RMS 
Shot Noise = sN (x,y) = √I(x,y) 

Total Noise = (dN
2 + sN

2)½ 
 

What are units? 
 
 

g = detector gain (γ/DN) 

Total Noise(DN) = (d(γ)N
2 + I(DN)×g)½ / g 



Noise Regimes 

read noise shot noise 

total noise 



Noise Reduction with coadding 

Coadding N images to 
accumulate 104 photons 

– how does final noise depend on 
initial signal per image? 

1 image 1000 images 



Real Space Noise 



Fourier Space Noise 



Our Nemesis – Noise! 

•  Noise is present in any measurement 
•  Noise carries through to Fourier space 
•  Often becomes comparable to signal at 

high frequencies. 
 



Power Spectrum of Noise 



Deconvolution with noise 

4-meter Diffraction Limited 1.6-meter Diffraction Limited 
+ 2% noise 



Deconvolution with noise 

power spectrum of I0 

Power spectrum of I 



Deconvolution with noise 

power spectrum of I0 

Power spectrum of I 

power spectrum of N 



power spectrum of I0 

Power spectrum of I 

combined power spectrum 



Deconvolution Example 

4-meter Diffraction Limited 1.6-meter Diffraction Limited 
Deconvolved, No noise 



Deconvolution Example/Exercise 

4-meter Diffraction Limited 1.6-meter Diffraction Limited 
Deconvolved, 2% noise 



Deconvolution Example/Exercise 

4-meter Diffraction Limited 1.6-meter Diffraction Limited 
+ 0.2% noise 



power spectrum of I0 

Power spectrum of I 

combined power spectrum 



Deconvolution Example/Exercise 

4-meter Diffraction Limited 1.6-meter Diffraction Limited 
Deconvolved, 0.2% noise 



It is possible… 

Wedemeyer-Böhm et al. 2009 

Telescope 

Scattered 
Light 

Combination 



It is possible…! 
Original Ideal PSF Derived  

PSF 

Wedemeyer-Böhm et al. 2009 



Ground-based PSF is more problematic 

•  PSF varies on timescales of milliseconds 
•  Averaging over time (>1 second) results 

in a more stable “long-term” (or seeing-
limited) PSF 

•  But the long-term PSF greatly attenuates 
high frequencies 

•  Only reliable estimate for PSF comes 
from AO lock point 



Long-term PSF 

8

Atmospheric Turbulence 

● Width of di,raction limited PSF: E/D

● Width of seeing limited PSF: E/r0

● Fried parameter (r0 [m]): Diameter of area with 
1 rad wavefront rms error

Di�raction Limited PSF

Seeing Limited PSF

Average over many realizations of the MTF 



Figure 3. Dopplergram captured on 6th May 2004. Top image was built using AO corrected images. Bottom image was
built using the deconvolved images.
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“Instantaneous” PSF   

•  Depends largely on the atmospheric 
distortions 

•  a priori, it is unknown 

Image Quality Metrics

Figure 1. Four examples of the solar atlas profile convolved with a instrumental profile with a FWHM of 0.096 Å.
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How to determine PSF    

Image Quality Metrics

Figure 1. Four examples of the solar atlas profile convolved with a instrumental profile with a FWHM of 0.096 Å.
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This assumes a constant MTF 

But the MTF is time varying 

So each image n taken at time tn has its own distinct MTF 

This allows us to use multiple realizations to try to separate the time-varying 
contributions of the MTF from the constant object i0. 

 
Warning! The original object is constant only if the solar scene  

doesn’t evolve during our observations. 
 try calculating: pixel size [arcsec] x 720 km/arcsec ÷ 7-10 km/sec (sound speed) 



How to determine PSF    
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So, process is like this: 

● Make your aperture A(x’,y’) . If there is turbulence, add phase information to it: 

● PSF is the square of the electric field at the screen, keep in mind it is complex: 

● Finally the image we see is the original image convolved with the PSF:

● You will need phase.fits and synth_sun.fits from the Dropbox folder I shared.  
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For notational ease, we will begin with a shorthand where the two indices t and
k are collapsed into a single index j ∈ Ji = Ti × Ki .

We use a space invariant image formation model with Gaussian white noise, A
data frame di j can then be expressed as the convolution of an object, fi , and a point
spread function (PSF), si j , plus a noise frame with Gaussian statistics, ni j . In the
Fourier domain, we get

Di j (u ) = Fi (u ) · Si j (u ) + Ni j (u ), (1)

where the uppercase symbols are the Fourier transforms of their lower case coun-
terparts and u is the 2-D spatial frequency coordinate. For brevity, we will drop
this coordinate for the remainder of the paper. The space invariance is violated
by anisoplanatism, so for a large field of view, the model is restricted to separate
processing of subfields that are smaller than or on the order of the isoplanatic angle.

The optical transfer function (OTF) can be written as

Si j = F{|F−1{Pi j }|2}, (2)

where F is the Fourier transform operator. Pi j is the generalized pupil function that
characterizes the optical system,

Pi j = Ai j exp{iφi j }, (3)

where φi j is the pupil phase, Ai j is a usually binary function that specifies the pupil
transmission (and thereby its geometrical extent), and i =

√
−1.

We parameterize the unknown phases,

φi j = θi j +
∑

m∈M
αi jmψim, (4)

where θi j is used for known phase differences, such as focus diversities, sub-pixel
registration, and fixed aberration differences, see below. M is the set of mode
indices. The set of basis functions, {ψim}, can be chosen depending on the problem
to be solved.

For optical elements, Zernike polynomials (Noll, 1976) are ideal but for at-
mospheric turbulence, we use a combination of Zernike (Z) polynomials for reg-
istration and atmospheric Karhunen–Loève (KL) modes (Roddier, 1990) for the
blurring effects,

ψim =
{

Zm/λi ; m ∈ Mtilts,

KLm/λi ; m ∈ Mblur.
(5)

With the numbering scheme of Noll (1976), we have M = Mtilts ∪ Mblur, where
Mtilts = {2, 3} and Mblur = {4, . . . , M}. The modes are normalized with respect
to the wavelength used for fi so identical αi jm coefficients at different wavelengths
correspond to the same wavefront or translation.
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We lexicographically arrange all the αi jm in a single column vector,

α = [α1 α2 . . . αI ]T, (6)

where T used as a superscript denotes matrix transpose and

αi = [ . . . αi jm . . . ]T
j,m∈Ji ×M . (7)

2.2. CONSTRAINED MFBD

For each object i , the data collection model describes a dataset that can be processed
with MFBD. There are different approaches to doing this. We use the one by Schulz
(1993), where we jointly estimate the object and the aberrations that minimize a
Maximum Likelihood error metric that measures the difference between the data
frames and model data frames based on the estimated quantities. The mathematical
form of the metric depends on the noise statistics. The simplest metric and the
fastest code is obtained for additive Gaussian noise statistics, which happens to be
a good approximation for low-contrast objects like the solar photosphere. It is not as
good for high-contrast wavelengths, particularly when we are photon starved (see
Section 4.4 below). The Gaussian metric is a least squares difference between a data
frame Di j and the corresponding estimated quantity, F̂ i Ŝi j , where the caret denotes
an estimated quantity. This can be simplified to a metric that does not explicitly
involve the object (Paxman et al., 1996),

Li (αi ) =
∑

u

[
J∑

j

|Di j |2 −
∣∣∑J

j D∗
i j Ŝi j

∣∣2

∑J
j |Ŝi j |

2 + γi

]

. (8)

The γi term is proportional to the noise power and corresponds to a simple Wiener
filter. In practice, we have been using Scharmer’s optimum low pass filter for this
step (Löfdahl et al., 1998).

The solution to the MFBD problem is to find the α that minimizes L and
thereby also the MFBD estimate of the object. Standard optimization algorithms
can be used. This involves iterative methods and usually calculation of gradients
with respect to the metric. These and other details are described by Löfdahl (2002).

If nothing else is known, the pupil phases are independent. However, we can
refine the mathematical description of the data collection model by specifying linear
equality constraints (LECs) on the pupil phase coefficients and thereby reducing
the number of effectively unknown parameters. The constraints are given as a set
of linear equations that have to be satisfied exactly while L is minimized.

One example is PDS. By exposing multiple cameras, looking through the same
telescope, simultaneously, a set of images can be obtained for which the degradation
of the images due to atmospheric distortions is identical. By focusing the cameras
differently, we introduce a known phase difference. This can be modeled as a focus

PSF 

Phases 

Coefficients 

Basis functions 

What do we do with multiple realizations? 

Recall from last week that the PSF comes from the products of  
an aperture mask (A) and a distribution of phases across that mask  

Phases 
(time varying) 

aperture 
(constant) 

Fit phases as a sum of functions 

so we just need to find the vector of coefficients 

van Noort et al. 2005 



What basis function to use? 
Zernike 2-D circular polynomials 



What basis function to use? 



How to determine PSF    
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6. WIDTH VS. FILTERGRAMS

• mosaic

• limb

• full disk

< in(u, v) > = i0(u, v) ⇥ < MTFn(u, v, tn) > (1)

i(u, v) = i0(u, v) ⇥MTF (u, v) + n(u, v) (2)

i0(u, v) = i(u, v) / MTF (u, v, t) (3)

i0(u, v) = i(u, v) / MTFn(u, v, tn) (4)

I0(x, y) = FFT (i(u, v) / MTF (u, v)) (5)

I0(x, y) = FFT (i(u, v) / MTF (u, v)) (6)

Li(↵i) =
X

u,v

"
NX

n

i2n � |i⇤n ˆMTFn)|2

(| ˆMTFn|2 + �)

#
(7)
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where T used as a superscript denotes matrix transpose and

αi = [ . . . αi jm . . . ]T
j,m∈Ji ×M . (7)

2.2. CONSTRAINED MFBD

For each object i , the data collection model describes a dataset that can be processed
with MFBD. There are different approaches to doing this. We use the one by Schulz
(1993), where we jointly estimate the object and the aberrations that minimize a
Maximum Likelihood error metric that measures the difference between the data
frames and model data frames based on the estimated quantities. The mathematical
form of the metric depends on the noise statistics. The simplest metric and the
fastest code is obtained for additive Gaussian noise statistics, which happens to be
a good approximation for low-contrast objects like the solar photosphere. It is not as
good for high-contrast wavelengths, particularly when we are photon starved (see
Section 4.4 below). The Gaussian metric is a least squares difference between a data
frame Di j and the corresponding estimated quantity, F̂ i Ŝi j , where the caret denotes
an estimated quantity. This can be simplified to a metric that does not explicitly
involve the object (Paxman et al., 1996),

Li (αi ) =
∑
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|Di j |2 −
∣∣∑J

j D∗
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]
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The γi term is proportional to the noise power and corresponds to a simple Wiener
filter. In practice, we have been using Scharmer’s optimum low pass filter for this
step (Löfdahl et al., 1998).

The solution to the MFBD problem is to find the α that minimizes L and
thereby also the MFBD estimate of the object. Standard optimization algorithms
can be used. This involves iterative methods and usually calculation of gradients
with respect to the metric. These and other details are described by Löfdahl (2002).

If nothing else is known, the pupil phases are independent. However, we can
refine the mathematical description of the data collection model by specifying linear
equality constraints (LECs) on the pupil phase coefficients and thereby reducing
the number of effectively unknown parameters. The constraints are given as a set
of linear equations that have to be satisfied exactly while L is minimized.

One example is PDS. By exposing multiple cameras, looking through the same
telescope, simultaneously, a set of images can be obtained for which the degradation
of the images due to atmospheric distortions is identical. By focusing the cameras
differently, we introduce a known phase difference. This can be modeled as a focus

so we just need to find the vector of polynomial coefficients 

Use the following metric, which is independent of original object 

Sum metrics of individual modes to get a global metric 

wi – weights applied to different modes 
van Noort et al. 2005 


