PHYS 7810: Solar Physics with DKIST
Lecture 5: Deconvolution 1

Kevin Reardon (kreardon@nso.edu
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Convolution Example

4-meter Diffraction Limited 1.6-meter Diffraction Limited

MURAM simulation, 5000 A, 0.013"/pixel



Deconvolution Example

4-meter Diffraction Limited 1.6-meter Diffraction Limited
Deconvolved
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MURAM simulation, 5000 A, 0.013"/pixel



Where does the MTF do the most damage?
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Where does the MTF do the most damage?

1.6 meter MTF
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Where does the MTF do the most damage?

1.6 meter MTF

MTF's preferentially reduce high
frequency power 10
So, correction for MTF results in a
large amplification of the
remaining high frequency power 10
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Our Nemesis - Noise!

Noise is present in any measurement
Two key sources:
Read Noise = d\(x,y) - constant RMS
Shot Noise = sy (x,y) = JI(x,y)
Total Noise = (d\? + sp?)”

What are units?
Total Noise(DN) = (d(y)y* + I(DN)xg)”/ g
g = detector gain (y/DN)
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Final Relative Noise

Noise Reduction with coadding
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Real Space Noise
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Fourier Space Noise
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Our Nemesis - Noise!

* Noise is present in any measurement
* Noise carries through to Fourier space

« Often becomes comparable to signal at
high frequencies.



Power Spectrum of Noise
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Deconvolution with noise

4-meter Diffraction Limited 1.6-meter Diffraction Limited
+ 2% noise
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Power

Deconvolution with noise
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Power

Deconvolution with noise

i(u,v) =ig(u,v) x MTF(u,v)+ n(u,v)
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Power

i(u,v) =ig(u,v) x MTF(u,v)+ n(u,v)
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4-meter Diffraction Limited

Deconvolution Example

1.6-meter Diffraction Limited
Deconvolved, No noise
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Deconvolution Example/Exercise

4-meter Diffraction Limited 1.6-meter Diffraction Limited
Deconvolved, 2% noise




Deconvolution Example/Exercise

4-meter Diffraction Limited 1.6-meter Diffraction Limited
+ 0.2% noise




Power

combined power spectrum

Power spectrum of |

MTF

Frequency [1/arcsec]



Deconvolution Example/Exercise

4-meter Diffraction Limited 1.6-meter Diffraction Limited
Deconvolved, 0.2% noise
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It is possible...
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It is possible...!
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Original

PSF

Wedemeyer-Bohm et al. 2009




Ground-based PSF is more problematic

e PSF varies on timescales of milliseconds

« Averaging over time (>1 second) results

in a more stable “long-term” (or seeing-
limited) PSF

« But the long-term PSF greatly attenuates
high frequencies

* Only reliable estimate for PSF comes
from AO lock point



Long-term PSF

Diffraction Limited PSF
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< ip(u,v) > =1ig(u,v) x < MTF,(u,v,t,) >
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“Instantaneous” PSF

» Depends largely on the atmospheric
distortions

* a priori, it is unknown

i(u,v) = ig(u,v) X M?F(u,v)



How to determine PSF

This assumes a constant MTF
i(u,v) =ig(u,v) X MTF(u,v)

But the MTF is time varying
i(u,v) =ig(u,v) X MTF(u,v,t)

So each image n taken at time t, has its own distinct MTF

in(u,v) = 1ig(u,v) X MTF,(u,v,t,)

This allows us to use multiple realizations to try to separate the time-varying
contributions of the MTF from the constant object i,.

Warning! The original object is constant only if the solar scene
doesn’t evolve during our observations.
try calculating: pixel size [arcsec] x 720 km/arcsec + 7-10 km/sec (sound speed)



How to determine PSF

What do we do with multiple realizations?
in(u,v) = 19(u,v) x MTF, (u,v,t,)

Recall from last week that the PSF comes from the products of
an aperture mask (A) and a distribution of phases across that mask
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Fit phases as a sum of functions

Phases ¢ij — Qij T 2 : O‘ijm@”im& Basis functions

meM
so we just need to find the vector of coefficients
Coefficients o = [a1 Q) ...y ]T

van Noort et al. 2005
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What basis function to use?

Zernike 2-D circular polynomials
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What basis function to use?
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How to determine PSF

¢ij = 0;; + Z Uijm Vim
meM

so we just need to find the vector of polynomial coefficients

a=[aa)...a;]!

Use the following metric, which is independent of original object

N "k T 2
Life) = 3 | 302 - n )
. (IMTE|* +)

U,V

Sum metrics of individual modes to get a global metric
1

w. - weights applied to different modes
van Noort et al. 2005



