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Previous lectures

● We started studying line formation 

● Then the inversion procedures that allow us to retrieve properties of the solar 
atmosphere from the observations

● Then, with Professor Maria Kazachenko, we saw what further steps we can take to 
answer our scientific questions 

● Somewhere in there we had to consider line polarizing mechanisms in order to 
diagnose the magnetic field – that was Zeeman effect 

● Today we are going to talk about another physical mechanism, useful for diagnosing 
higher atmospheric layers – scattering polarization and Hanle effect
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Zeeman effect – refresher 

Zeeman splitting for the transition where upper level has J = 3 and lower J = 2. There are 
total of 15 sub-transitions. I sometimes call different m values – Zeeman sublevels. 
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Why the polarization? 

Trujillo Bueno (2006)

Individual photons are 100% 
polarized. 

Different  Δm transitions – different m transitions – different 
polarizations!

Parallel with B: only positive and 
negative circular polarization (σblue,σσred) 

Perpendicular to B: σblue,σσred seen as 
negative linear polarization,σ π as 
positive linear polarization
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Parallel to B

Trujillo Bueno (2006)
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Perpendicular to B 

Trujillo Bueno (2006)
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So,σ Zeeman effect is: 

● Wavelength shift of the completely polarized Zeeman sub-transitions, that 
leads to the net polarization of the light. 

● An implicit assumption here is that the population of Zeeman sublevels follows some 
equilibrium distribution.

● In Scattering polarization / Hanle effect, everything is completely reversed.

● But, let’s start from a classic case... 
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Classic scattering polarization: an EM wave scatters on a particle

Think about this: a) Why is the polarization this way? 
      b) What would happen if illumination was isotropic?
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Can this happen in the atmosphere of the Sun?
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So,σ where does the anisotropy come from?
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Ok,σ so how to formalize that?

● In the previous example,σ we have seen that the electric field component along 
x is stronger than along y. 

● This will result in some non-zero Stokes Q (+ or – depend on how we define it,σ 
always check with your observers!) 

● But,σ how to “formalize” this,σ how to calculate Q? 

● We will have to embark on a modeling story to be able to calculate the intensity 
and the polarization of the scattered light.

● This will be a very gentle intro to non-local thermodynamic equilibrium 
radiative transfer (NLTE). Scattering is,σ in itself,σ a NLTE process.
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For the polarization for now 

● How to calculate the intensity of the scattered light?

● Ideally,σ we would solve RTE over the blob. Let’s say we know the opacity. 

● However,σ emissivity is not LTE one (Why? Discuss?)
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For the polarization for now 
● How to calculate the intensity of the scattered light?

● Ideally,σ we would solve RTE over the blob. Let’s say we know the opacity. 

● However,σ emissivity is not LTE one (Why? Discuss?)

● Ok,σ well,σ let’s assume all the light is scattered. Isotropically (does not care 
where it came from). 

● All intensity that is absorbed is going to be emitted,σ so:
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There are some interesting aspects to this formula,σ so let’s 
appreciate it a bit… 

● Opacity is assumed to be isotropic (does not have to be)

● Emissivity too

● Incoming radiation,σ however,σ does not have to be isotropic 

● We can divide both sides by the opacity and assume the axial symmetry...
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One scattering approximation

The emitted intensity is proportional to the illumination 
and to the number of absorbers (that are also emitters).
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But we know that the radiation is not isotropic:

● Mueller matrix for
Rayleigh scattering

● Or,σ alternatively: 

Mean intensity 

Anisotropy
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Anisotropy:

Compare the anisotropy and the mean intensity for following cases: 

● Isotropic radiation

● Radiation coming from below 

● Radiation coming from the sides

● What is the polarization?
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Anisotropy:

Compare the anisotropy and the mean intensity for following cases: 

● Isotropic radiation – no polarization

● Radiation coming from below – Q positive 

● Radiation coming from the sides – Q negative

● What is the polarization? - In first example 0% in second 100%, in last 50%
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This was for the single scattering continuum radiation

● Lines absorb/emit of a range of wavelength

● They are are also formed over a range of heights 

● Lines are sensitive to the magnetic field 

● There is also “collisional” depolarization

● And the so called intrinsic polarizability

● The expressions are going to be much more complicated 
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“Master equation”
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Don’t worry,σ we will go simpler – let’s exclude B

● First notice tht he problem is axially symmetric (if there is no magnetic field). 
Axis of symmetry is atmospheric normal (that is why we use μ instead of the 
two angles)

● There is no reason for U and V to exist. (Not obvious,σ let’s talk about it).
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Let’se see why they call it line scattering – forget about 
polarization

● Radiation can alter the level populations (e.g. photoinization,σ optical pumping) 

● Now,σ in two level atom case,σ there are two components to the source function

This looks like the scattering we saw before (with an extra term that integrates over the 
wavelength – this is the famous complete frequency redistribution)
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Now,σ with the polarization things become more complicated

● From Trujillo Bueno (2003) – Generation and Transfer of Polarized radiation,σ 
there is a lot to unpack here:

Collisional 
depolariation

Hanle 
depolarization

Intrinsic line 
polarizability
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● Source function is anisotropic 

● Anisotropy modifies the “pure intensity” too! 

● Sensitivity to the magnetic field 

● More NLTE  more polarization → more polarization 

● Very very interesting and subtle
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Scattering line polarization – QM picture

from Trujillo Bueno (2003)

„Selective absorption“

Uneven population of 
Zeeman subl-levels 

leads to the 
“polarization” of the 

atomic levels. 

This leads to the net 
linear polarization of the 

light.
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Scattering line polarization – analogy with Zeeman 

from Trujillo Bueno (2003)
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Why is the radiation in the atmosphere anisotropic? 

● Let’s write down RTE for inclined rays:

● Use Milne-Eddington approximation: b is the Source 
function gradient. 
Larger gradient  → more polarization 
more anisotropy
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NLTE gradients are larger:
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“Microturbulent” Hanle effect 

● Mixed polarity fields in a pixel would not be seen by Zeeman polarization 
(convince yourself of that)

● But,σ with Hanle:
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Ok,σ enough,σ let’s see some results! 

● How does Hanle diagnostic in the atmosphere work.

● First, polarization degrees are very small → high sensitivity needed → no spatial 
resolution 

● That means we usually use some prototype atmosphere (e.g. FALC) to model 
anisotropy and then fit B to it. 

● Usually we can do it at several heliocentric angles to get some more insight
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Faurobert-Scholl (1993),σ studying Sr 4607 polarization
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The famous TB et al Nature paper,σ again using Sr 4607
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Yours truly,σ playing with scattering polarization in molecules

Milic & Faurobert (2012) – using depth dependent magnetic 
fields to fit multiple lines at multiple heliocentric distances
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Summary 

● Scattering polarization is a consequence of NLTE-ness

● Atomic physics involved is really complicated, but there are some analogies to be 
drawn to the classic case 

● Hanle effect further modifies that polarization, rotates and depolarizes the lines

● It can see mixed polarity fields on small scales 

● So far the analysis shows the magntude of that field in photosphere to be order of 
100G, which is concordance with highest resolution Zeeman diagnotics 

● With DKIST we aim to go a step further and also probe horizontal anisotropies 
(Ask Neeraj)



38

Zeeman vs Hanle 

Pure scattering,σ 
no magnetic 

field

Weak magnetic 
field

Strong magnetic 
field
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Horizontal anisotropies – the future

From del Pino Aleman et al. (2018)
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