# PHYS 7810: Solar Physics with DKIST

# Lecture 25: Scattering polarization and Hanle effect

Ivan Milic ivan.milic@cologrado.ledu





#### Previous lectures

- We started studying line formation
- Then the inversion procedures that allow us to retrieve properties of the solar atmosphere from the observations
- Then, with Professor Maria Kazachenko, we saw what further steps we can take to answer our scientific questions
- Somewhere in there we had to consider line polarizing mechanisms in order to diagnose the magnetic field – that was Zeeman effect
- Today we are going to talk about another physical mechanism, useful for diagnosing higher atmospheric layers – scattering polarization and Hanle effect



Zeeman splitting for the transition where upper level has J = 3 and lower J = 2. There are total of 15 sub-transitions. I sometimes call different m values – Zeeman sublevels.

#### The Zeeman Effect



Why the polarization?

Individual photons are 100% polarized.

Different Δm transitions – different polarizations!

**Parallel with B:** only positive and negative circular polarization ( $\sigma_{blue}$ ,  $\sigma_{red}$ )

**Perpendicular to B:**  $\sigma_{\text{blue}}$ ,  $\sigma_{\text{red}}$  seen as negative linear polarization,  $\pi$  as positive linear polarization

#### **The Zeeman Effect**



## Parallel to **B**



#### **The Zeeman Effect**



## Perpendicular to **B**



#### So, Zeeman effect is:

 Wavelength shift of the completely polarized Zeeman sub-transitions, that leads to the net polarization of the light.

 An implicit assumption here is that the population of Zeeman sublevels follows some equilibrium distribution.

In Scattering polarization / Hanle effect, everything is completely reversed.

But, let's start from a classic case...

## Classic scattering polarization: an EM wave scatters on a particle



Think about this: a) Why is the polarization this way?

b) What would happen if illumination was isotropic?

# Can this happen in the atmosphere of the Sun?



## So, where does the anisotropy come from?



#### Ok, so how to formalize that?

- In the previous example, we have seen that the electric field component along
   *x* is stronger than along *y*.
- This will result in some non-zero Stokes Q (+ or depend on how we define it, always check with your observers!)
- But, how to "formalize" this, how to calculate Q?
- We will have to embark on a modeling story to be able to calculate the intensity and the polarization of the scattered light.
- This will be a very gentle intro to non-local thermodynamic equilibrium radiative transfer (NLTE). Scattering is, in itself, a NLTE process.

## For the polarization for now

- How to calculate the intensity of the scattered light?
- Ideally, we would solve RTE over the blob. Let's say we know the opacity.
- However, emissivity is not LTE one (Why? Discuss?)

## For the polarization for now

- How to calculate the intensity of the scattered light?
- Ideally, we would solve RTE over the blob. Let's say we know the opacity.
- However, emissivity is not LTE one (Why? Discuss?)
- Ok, well, let's assume all the light is scattered. Isotropically (does not care where it came from).
- All intensity that is absorbed is going to be emitted, so:

$$\frac{dE_{\lambda}}{dVdt}^{\text{emitted}} = \frac{dE_{\lambda}}{dVdt}^{\text{absorbed}}$$
$$j_{\lambda} = \oint I_{\lambda}^{\text{inc}}(\theta, \phi) \chi_{\lambda} \sin \theta \, d\theta \, d\phi$$

There are some interesting aspects to this formula, so let's appreciate it a bit...

$$j_{\lambda} = \oint I_{\lambda}^{\rm inc}(\theta, \phi) \chi_{\lambda} \sin \theta \, d\theta \, d\phi$$

- Opacity is assumed to be isotropic (does not have to be)
- Emissivity too
- Incoming radiation, however, does not have to be isotropic
- We can divide both sides by the opacity and assume the axial symmetry...

## One scattering approximation

$$S_{\lambda} = \frac{1}{2} \int I_{\lambda}(\mu) d\mu$$
 
$$\mu = \cos \theta$$
 
$$I_{\lambda} = S_{\lambda}(1 - e^{-\tau_{\lambda}}) \approx S_{\lambda} \tau_{\lambda}$$
 The Sin

The emitted intensity is proportional to the illumination and to the number of absorbers (that are also emitters).

## But we know that the radiation is not isotropic:

Mueller matrix for Rayleigh scattering 
$$\mathbf{P}(\Theta) = \frac{3}{2} \begin{bmatrix} \frac{1}{2}(1 + \cos^2\Theta) & -\frac{1}{2}(1 - \cos^2\Theta) & 0 & 0 \\ -\frac{1}{2}(1 - \cos^2\Theta) & \frac{1}{2}(1 + \cos^2\Theta) & 0 & 0 \\ 0 & 0 & \cos\Theta & 0 \\ 0 & 0 & \cos\Theta \end{bmatrix}$$



## Anisotropy:

$$J_0^2 = \frac{1}{4} \int_{-1}^1 I(\mu')(1 - 3\mu'^2) d\mu'$$

#### Compare the anisotropy and the mean intensity for following cases:

- Isotropic radiation
- Radiation coming from below
- Radiation coming from the sides
- What is the polarization?

$$I(\mu')_{1} = coust = 1$$

$$J_{0} = \frac{1}{2} \int_{0}^{2} \mu' = 1$$

$$J_{0} = \frac{1}{2} \int_{-1}^{2} (1-3\mu') d\mu' = \frac{1}{2} (2-\mu')^{3} = 0$$

$$V_{0} = \frac{1}{4} \int_{-1}^{2} (1-3\mu') d\mu' = \frac{1}{2} (2-\mu')^{3} = 0$$

$$V_{0} = \frac{1}{4} \int_{0}^{2} (1-3\mu') d\mu' = \frac{1}{2} (2-\mu')^{3} = 0$$

## Anisotropy:

$$J_0^2 = \frac{1}{4} \int_{-1}^1 I(\mu')(1 - 3\mu'^2) d\mu'$$

### Compare the anisotropy and the mean intensity for following cases:

- Isotropic radiation no polarization
- Radiation coming from below Q positive
- Radiation coming from the sides Q negative
- What is the polarization? In first example 0% in second 100%, in last 50%

## This was for the single scattering continuum radiation

- Lines absorb/emit of a range of wavelength
- They are are also formed over a range of heights
- Lines are sensitive to the magnetic field
- There is also "collisional" depolarization
- And the so called intrinsic polarizability
- The expressions are going to be much more complicated

## "Master equation"

## Don't worry, we will go simpler – let's exclude B

- First notice tht he problem is axially symmetric (if there is no magnetic field).
   Axis of symmetry is atmospheric normal (that is why we use μ instead of the two angles)
- There is no reason for *U* and *V* to exist. (Not obvious, let's talk about it).

$$\frac{dI_{\lambda}}{d\tau_{\lambda}} = I_{\lambda} - S_{\lambda}^{I}$$

$$\frac{dQ_{\lambda}}{d\tau_{\lambda}} = Q_{\lambda} - S_{\lambda}^{Q}$$

Let'se see why they call it line scattering – forget about polarization

• Radiation can alter the level populations (e.g. photoinization, optical pumping)



Now, in two level atom case, there are two components to the source function

$$S_{\lambda} = \epsilon B + (1 - \epsilon) \frac{1}{2} \int_{0}^{\infty} \int_{-1}^{1} I_{\lambda}(\mu') \phi_{\lambda} d\mu' d\lambda = \epsilon B + (1 - \epsilon) J_{0}^{0}$$

This looks like the scattering we saw before (with an extra term that integrates over the wavelength – this is the famous complete frequency redistribution)

## Now, with the polarization things become more complicated

 From Trujillo Bueno (2003) – Generation and Transfer of Polarized radiation, there is a lot to unpack here:

$$S_{\lambda}^{I}=\epsilon B+(1-\epsilon)\left(J_{0}^{0}+w^{c}w^{H}w^{2}\frac{1}{2\sqrt{2}}(3\mu^{2}-1)J_{0}^{2}\right)$$
 
$$S_{\lambda}^{Q}=(1-\epsilon)w^{c}w^{H}w^{2}\frac{3}{2\sqrt{2}}(\mu^{2}-\frac{\mathrm{Harple}}{\mathrm{depolarization}}J_{\mathrm{depolarization}}^{2})$$
 
$$J_{0}^{2}=\frac{1}{4\sqrt{2}}\int_{0}^{\infty}\int_{-1}^{1}I_{\lambda}(\mu')(3\mu'^{2}-1)d\mu'\phi_{\lambda}d\lambda$$

$$S_{\lambda}^{I} = \epsilon B + (1 - \epsilon) \left( J_{0}^{0} + w^{c} w^{H} w^{2} \frac{1}{2\sqrt{2}} (3\mu^{2} - 1) J_{0}^{2} \right)$$

$$S_{\lambda}^{Q} = (1 - \epsilon) w^{c} w^{H} w^{2} \frac{3}{2\sqrt{2}} (\mu^{2} - 1) J_{0}^{2}$$

$$J_{0}^{2} = \frac{1}{4\sqrt{2}} \int_{0}^{\infty} \int_{-1}^{1} I_{\lambda}(\mu') (3\mu'^{2} - 1) d\mu' \phi_{\lambda} d\lambda$$

- Source function is anisotropic
- Anisotropy modifies the "pure intensity" too!
- Sensitivity to the magnetic field
- More NLTE → more polarization
- Very very interesting and subtle

## Scattering line polarization – QM picture



"Selective absorption"

Uneven population of Zeeman subl-levels leads to the "polarization" of the atomic levels.

This leads to the net linear polarization of the light.

from Trujillo Bueno (2003)

## Scattering line polarization – analogy with Zeeman



## Why is the radiation in the atmosphere anisotropic?

Let's write down RTE for inclined rays:

$$\frac{dI_{\lambda}}{ds} = \frac{dI_{\lambda}}{dz/\cos\theta} = \mu \frac{dI_{\lambda}}{dz} = -\chi_{\lambda}I_{\lambda} + j_{\lambda}$$

$$\mu \frac{dI_{\lambda}}{d\tau_{\lambda}} = I_{\lambda} - S_{\lambda}$$

• Use Milne-Eddington approximation:

$$S = a + b\tau_{\lambda}$$

b is the Source function gradient. Larger gradient → more anisotropy

$$I_{\lambda}^{+} = \int_{0}^{\infty} (a + b\tau_{\lambda})e^{-\tau_{\lambda}/\mu}d\tau_{\lambda}/\mu = \underbrace{a + b\mu}_{3}$$

## NLTE gradients are larger:



#### "Microturbulent" Hanle effect

- Mixed polarity fields in a pixel would not be seen by Zeeman polarization (convince yourself of that)
- But, with Hanle:

$$w^{H} = 1 - \frac{2}{5} \left( \frac{\Gamma_{H}^{2}}{1 + \Gamma_{H}^{2}} + \frac{4\Gamma_{H}^{2}}{1 + 4\Gamma_{H}^{2}} \right)$$
$$\Gamma_{H} = 0.88 \frac{gB}{A_{ul} + \Gamma_{depolarizing}}$$

## Ok, enough, let's see some results!

- How does Hanle diagnostic in the atmosphere work.
- First, polarization degrees are very small → high sensitivity needed → no spatial resolution
- That means we usually use some prototype atmosphere (e.g. FALC) to model anisotropy and then fit B to it.
- Usually we can do it at several heliocentric angles to get some more insight

## Faurobert-Scholl (1993), studying Sr 4607 polarization



## The famous TB et al Nature paper, again using Sr 4607



## Yours truly, playing with scattering polarization in molecules



Milic & Faurobert (2012) – using depth dependent magnetic fields to fit multiple lines at multiple heliocentric distances

## **Summary**

- Scattering polarization is a consequence of NLTE-ness
- Atomic physics involved is really complicated, but there are some analogies to be drawn to the classic case
- Hanle effect further modifies that polarization, rotates and depolarizes the lines
- It can see mixed polarity fields on small scales
- So far the analysis shows the magnitude of that field in photosphere to be order of 100G, which is concordance with highest resolution Zeeman diagnotics
- With DKIST we aim to go a step further and also probe horizontal anisotropies (Ask Neeraj)

#### Zeeman vs Hanle



## Horizontal anisotropies – the future



From del Pino Aleman et al. (2018)

