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Previous lectures

● Were observations and modeling

● We are very rarely going to perform observations and report them as such (not 
impossible, and nothing to scoff at, though)

● Often we want to:

1) Use a theoretical model to reproduce/justify and thus understand what we 
have seen. (Remember H alpha example from previous class) 

2) Fit a model to the data with the aim of inferring some parameters, 
that, hopefully, allow us to draw some quantitative conclusions 
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Some examples 

● Fit an ellipse to the trajectory of the observed star to find the location and the mass of 
the Black Hole 

● Fit a parabola to the distance modulus vs redshift function to infer / detect 
acceleration of the universe 

● Fit a straight line to the T2 vs l, dependency to infer gravitational acceleration using 
simple pendulum 

● Fit a cosmological model to CMB map / power spectrum to find cosmological 
parameters 

● Fit a line formation model to the observed Stokes spectrum to infer (measure) 
magnetic field, velocity, temperature
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Let me tell you a story about little me... 

● When I was a 15 years old kid, I was attending, fanatically, this “boarding school 
for nerds” close to my hometown 

● It is a institution for high school kids who have a keen interest in science, where 
you are taught scientific process

● One of the first exercises involved model fitting 

● I remember using these magnificent programs back than called “Origin” and 
“Table Curve” and thinking: 

● “How come the program itself cannot figure which function to use to fit the data?” 
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I was obviously missing a point! 

● Fitting is not it’s own purpose! 

● If you see some data looking like a straight line or a parabola, does not mean 
that you should immediately whip out your scipy.optimize.minimize package

● (Sure, there are, so-to-speak, non-inferential applications of fitting, but we are not 
talking about that here)

● If you are fitting a model to the data , you need a model, you need the 
measurements, you need errors (uncertainties), and a few more things, that we 
going to talk about today...
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To understand all this, one article is enough and one article only: 

● https://arxiv.org/pdf/1008.4686.pdf

https://arxiv.org/pdf/1008.4686.pdf
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We will start from the simplest possible example

● We are measuring intensity from one pixel of our image few times (in counts). We have 
a strong reason to assume that the “original” (call it, “true”) number of counts is constant 
in time. 

● We measure 20 times and get the following results:

● [10099.45461478 10033.91038118  9949.99580719  9929.26995655

●  10009.59103032 10023.19828581 10048.77589944  9878.03777698

●   9970.63765657  9898.44337474  9949.03521708  9861.05450482

●  10104.43740336  9871.37116346  9999.58484226 10070.42870939

●  10042.07927595  9922.21971703  9950.06443439 10033.89015678]
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We want to figure out the true value

● We can’t know for sure

● We can only estimate, pay attention now: 

The most probable value of the true value given the observations we 
have. (And the prior information about the true value).

● In this case, these 20 measurements (random variables) are our observations

● (Unknown) constant value is our model. 
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We want to figure out the true value

● We can’t know for sure

● We can only estimate, pay attention now: 

The most probable value of the true value given the observations we 
have. (And the prior information about the true value).

● In this case, these 20 measurements (random variables) are our observations

● (Unknown) constant value is our model. 

● And so are the measurement uncertainties.
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Let’s plot this

Which line is the closest to the “true” value? 
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Is it a bit easier now? 
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Ok, what is our model here?

Measured value

Uncertainty – 
random! 

“True” value – a 
constant 

Because of the 
uncertainty, our 
measured 
values are also 
random! 

Our uncertainty (noise) is, 
most of the time, Gaussian: 
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So, we see that probability of getting a certain measurement is: 

And the whole set: 
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What are we looking for

● We want to find the ytrue that maximizes: 
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What are we looking for

● We want to find the ytrue that maximizes: 

Or do we? Let’s read what this means:

Probability of getting the set of measurements, given the true value ytrue 
is … 
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We do not want that! 

● To illustrate that this is a wrong function to 
maximize, usually disease examples are used. 
We do not want that. Let’s come up with a 
different example. 

“A pack of cashews was found missing from NSO. 
A print of Onitsuka tiger shoes was found next to 
the cupboard...”
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The Bride wears the Tigers 100% of time
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The Bride wears the Tigers 100% of time Your lecturer wears the Tigers 30% of time

Who stole the Cashews!?!?
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The Bride wears the Tigers 100% of time Your lecturer wears the Tigers 30% of time

Who stole the Cashews!?!?
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Let’s write down the probabilities in Asics notation

But what we actually need is: 

How do we calculate this, what 
do we need to do? 
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Ok let’s abandon Asics notation and discuss Bayes theorem

Probability of the model 
given the data – posterior 

Probability of the data given 
the model - likelihood

Probability of the model 
before the measurement - 
prior

Probability of the data for 
all the models – normalizing 
factor
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How do we use Bayes theorem? 

● We can use it to compare probabilities of the two discrete events (who stole 
the Cashews?) 

● We can use it to find the most probable values of the parameters (i.e. to infer a 
quantity)

● We can use it to compare different models (e.g. linear vs quadratic) 

● We can do many things

● Let’s use it to solve some of the problems we were facing  
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Missing cashews 

1.0 ~ 0

0.3 ~ 1.0

1.0

~ 0

~ 1
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Our measurement problem

● p(y) is just a normalizing factor, we can neglect it now

● p(y_true) is interesting, let’s assume that we know nothing about it an all values 
are equally probable (so called “uniform” prior) 

● However, some values are impossible due to their physical meaning 

● If prior is uniform enough, posterior and likelihood have the same maximum in 
the y_true space. 
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Next step – fitting

● Ok, cool – now we know we want to find the maximum likelihood 

● What are we actually doing? We are looking for the maximum of the likelihood 
function in 1D space where y_true lives.

● Keep in mind, no matter how many measurements you have, you are 
searching for the maximum in the model space! 

● That is why most fitting problems are actually optimization problems 
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So, let’s take a grid of values in a reasonable range and see

What we did here was “sampling”  - we probed a set of 
possible values and sketched the probability distribution
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Maximizing likelihood – minimizing chi-squared 

● From the maximum likelihood we immediately get the minimum chi-squared

Or, more generally: 
Value that model 
parameters predict 

Model parameters 
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Some things to know 

● Chi-squared minimization is strictly proper when our priors are uniform and 
noise is Gaussian 

● That is often the case, mostly because we don’t know better 

● Can you think of some situations when priors are not uniform and noise is not 
gaussian?

● Chi-squared is also used for model assessment – should be unity (but...)
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Numerical methods 

● Minimizing chi-squared is a numerical problem, usually solved by some sort of 
numerical minimization 

● You will most likely want to use your favorite python minimization / curve fitting 
tool to do this. 

● E.g. scipy.optimize.minimize will do a good job 

● It is a good practice to code your own sometimes 

● If you use very specialized models you might have to

● There is also “sampling” - we will go back to this soon! 
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Linear models 

● What is a linear model? Can you give me some examples?
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Linear models 

● What is a linear model? Can you give me some examples?

● That is correct, linear models are the models that are linear in the 
parameters , the relationship between x and y does not have be linear. 

Linear: 

Non-linear: 
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Linear models 

● Linear model fitting is literally solving a linear system of equations:

● Solving this linear system using a pseudo-inverse guarantees chi-squared 
minimization (max likelihood)



33

But, if you can afford it – it is still better to sample 

● Sampling, that is : probing your parameter space gives you insight in the full 
shape of your chi-squared surface 

● This way you can better explore degeneracies (correlations), estimate 
uncertainties, spot multiple minima, etc. 

● Uncertainties are essential 

● They allow us to asses the strength of our conclusions, and to compare 
different datasets, results, etc.  
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Example results obtained by sampling 

Hogg et al. “Fitting a model to the data” , 2010 arxiv e-prints 
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Example results obtained by sampling 

Milic et al. (2014) – a non-linear model
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How do we get these? How do we sample?

● MCMC (Hammer) – Marko Chain Monte Carlo 

● Codes that travel in a clever way through the phase space (space of parameters)

● The “walker” will visit points with high probability more often 

● The plots that we saw are density plots of the walkers 

● Easy to code (at least in the basic form)

● Works for all linear and non-linear functions 

● Takes a lot of time (we need a lot of points for good statistics)
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How does MCMC work? 
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What does it mean to be Bayesian

● Being Bayesian means being objective – you might be a Bayesian without 
knowing it! 

● It means taking care of priors 

● It means looking at the shape of your posterior 

● It also means marginalizing over nuisance parameters 

● What is this? 



39

Nuisance parameters 
● Parameters that are needed for the fit, but are not important for answering our 

scientific question. 

● Example: I am fitting v(d) dependency to determine Hubble’s constant

Offset – can be 
there because of 
different reasons 

Slope – what we are 
really interested 
into
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After fitting  I am going to get something like this 

Hogg et al. “Fitting a model to the data” , 2010 arxiv e-prints 
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Now, to get my final results, I marginalize over the nuisance 
parameters
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Marginalizing results of MCMC chains 

● Just ignore the axes that are nuisance parameters! 

Milic et al. (2014) – a non-linear model
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Summary 
● Model fitting necessitates having a model, that (imho) should be motivated by 

the physics of your problem 

● Sometimes it can be very simple (i.e. weak field approximation), sometimes it 
will be very complicated (full scale inversion) 

● You have to maximize the posterior probability, that in case of uniform priors 
and Gaussian errors reduces to minimizing Chi-squared 

● You can simply optimize to find parameter values that minimize your chi-
squared. 

●  But you can also “sample” and obtain full shape of posterior. 

● For next week: https://emcee.readthedocs.io/en/stable/ 

https://emcee.readthedocs.io/en/stable/
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Solar physics examples – a linear model

● Weak field approximation predicts a relationship between Stokes I and V



45

Solar physics examples – a non linear model  - “inversion”
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