PHYS 7810: Solar Physics with DKIST

Lecture 17: Spectral Line Polarization

Ivan Milic ivan.milic@colorado.edu

Previous lectures

- We have seen how to model spectral lines and investigate where they form
- We learned a bit about signatures of various quantities:

temperature

velocity

turbulent velocities

pressure

- All these leave their signature in the intensity spectrum
- Now we move on and we try to understand what kind of information is hidden in the polarization

So here is a cube, again

Time → Wavelength; Sunspot observations with IBIS at the NSO/Dunn Solar Telescope. Courtesy of L. Kleint, K. Reardon, and A. Tritschler

Why do polarization profiles look like this?

"Quiet-ish" Sun observed with HINODE/SOT SP

A classical approach

- Spectral line is treated as a harmonic oscillator
- Magnetic field interacts with the oscillator via Lorenz Force
- We solve differential equations for electron motion and we obtain the spectral distribution of the emitted light, absorption and dispersion coefficients
- It is based upon classical electrodynamics / EM
- You maybe embarked on fragments of this already
- Referent book "Introduction to Spectropolarimetry" Jose Carlos del Toro Iniesta

A quantum approach

- We analyze the Hamiltonian of the atom in the presence of the magnetic field
- This explains Zeeman splitting
- We then employ quantum electrodynamics to understand photon-atom interaction and the absorption and emission of polarized light
- It explains well more "exotic" effects: scattering polarization, Hanle effect, orientation to alignment conversion, etc.
- Harder, but probably worth it if you are going to model anyway
- Referent book: "Polarization in Spectral Lines" by Egidio Landi Degl'Innocenti

Polarization of the light

Credits: www.edmundoptics.com

Polarization = anisotropy

- Zeeman: magnetic field
- **Scattering:** geometry
- Hanle: both

Stokes parameters:

How do we model spectral line polarization

- Well, conceptually, the story is the same
- We look at this inhomogeneous slab of gas called solar atmosphere
- We assume some incident, unpolarized intensity impinging at the bottom
- And we see analyze how the intensity and the polarization (Stokes vector) change as they travel outward
- This is so called polarized radiative transfer
- Believe it or not, for that we will use the so called Mueller matrices

Mueller matrices

 We used them to represent changes of the Stokes vector, caused by a medium (optical element, or in our upcoming case, a slab of gas). A 4 x 4 matrix.

$$I' = \hat{M}I$$

For example, horizontal linear polarizer has:

$$\frac{1}{2} \left(\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \right)$$

Solar atmosphere is a Mueller matrix too!

We will call it the absorption matrix or the absorption tensor, so:

$$\frac{\mathrm{d}}{\mathrm{d}z} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = - \begin{pmatrix} \eta_I & \eta_Q & \eta_U & \eta_V \\ \eta_Q & \eta_I & \rho_V & -\rho_U \\ \eta_U & -\rho_V & \eta_I & \rho_Q \\ \eta_V & \rho_U & -\rho_Q & \eta_I \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix}$$

- The coefficients follow from the nature of the microscopic processes involved in the polarization, we call them selective absorption and the dispersion of the light.
- Discuss: What do these mean? What would be non-selective absorption?

Why do off-diagonal elements exist?

 Magnetic field alters the Hamiltonian of the atom (most of the following plots are from the Introduction to Spectropolarimetry by J.C. del Toro Iniesta)

$$\mathbf{H}_B = \boldsymbol{\mu} \cdot \boldsymbol{B} + O\left(B^2\right)$$
 $\boldsymbol{\mu} = \mu_0(\boldsymbol{J} + \boldsymbol{S})$

We look at the diagonal of this, which gives us different possible energy values

$$\langle \mathit{Isjm} \, | \mathbf{H}_B | \, \mathsf{sj} \, \mathit{m} \rangle = \mathit{mg} \mu_0 B = \mathit{mghv}_\mathrm{L}$$

g is the so called Lande factor, that describes the sensitivity of the level to the magnetic field.

And then the levels get split j = 3+2 j = 2 $\sigma_{\rm b}$ $\sigma_{\rm r}$

Zeeman splitting for the transition where upper level has J = 3 and lower J = 2. There are total of 15 sub-transitions. I sometimes call different m values – Zeeman sublevels.

λ

Few words about the transitions

- Different levels have different principal quantum number n
- Levels with different orbital quantum number also generally have different energies (in case of Hydrogen they almost overlap) – I
- Then there is also spin quantum number and from the spin-orbit coupling we get the total angular quantum number **J**
- Degeneracy of a level is 2J + 1
- Now we understand what that means, degeneracy are "hidden levels"
- We distinguish these (Zeeman sub-levels) by their magnetic quantum number m

We know the Zeeman effect splits spectral lines

G.E. Hale, F. Ellerman, S.B. Nicholson, and A.H. Joy (ApJ, 1919)

Credits: Yukio Katsukawa

Can we see the splitting in the equations?

The Zeeman Effect

$$\frac{\mathrm{d}}{\mathrm{d}z} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = - \begin{pmatrix} \eta_I & \eta_Q & \eta_U & \eta_V \\ \eta_Q & \eta_I & \rho_V & -\rho_U \\ \eta_U & -\rho_V & \eta_I & \rho_Q \\ \eta_V & \rho_U & -\rho_Q & \eta_I \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix}$$

$$\eta_{I} = \frac{\eta_{0}}{2} \left\{ \phi_{0} \sin^{2} \theta + \frac{1}{2} \left[\phi_{+1} + \phi_{-1} \right] \left(1 + \cos^{2} \theta \right) \right\}$$

Yes, one profile is now three profiles, combined!

Ok, we know about that, why the polarization?

- Photons have spin one and two possible states, -1 and 1 (massless)
- Quantization axis for the angular momentum is this case is chosen to be the magnetic field director
- Projection of the angular momentum of the photon on the mag field can be -1,0,1
- However the angular momentum has to be conserved. If the photon travels
 paralelly to the mag field only -1 and 1 transitions in m are allowd
- If it travels perpendicularly, then all three are allowed.

The Zeeman Effect

Why the polarization?

Individual photons are 100% polarized.

Different Δm transitions – different polarizations!

Parallel with B: only positive and negative circular polarization (σ_{blue} , σ_{red})

Perpendicular to B: σ_{blue} , σ_{red} seen as negative linear polarization, π as positive linear polarization

The Zeeman Effect

Parallel to **B**

The Zeeman Effect

Perpendicular to **B**

When we put it all together

- These are all the absorption matrix elements.
- Each of the three profiles counts all the contributions (if we have multiple transitions with same change of m)
- Explicit dependency on the orientation of B
- Magnitude of **B** appears in the profiles (shifts them)

$$\begin{split} \eta_I &= 1 + \frac{\eta_0}{2} \left\{ \phi_\mathrm{p} \sin^2 \theta + \frac{1}{2} \left[\phi_\mathrm{b} + \phi_\mathrm{r} \right] \left(1 + \cos^2 \theta \right) \right\} \\ \eta_Q &= \frac{\eta_0}{2} \left\{ \phi_\mathrm{p} - \frac{1}{2} \left[\phi_\mathrm{b} + \phi_\mathrm{r} \right] \right\} \sin^2 \theta \cos 2\varphi \\ \eta_U &= \frac{\eta_0}{2} \left\{ \phi_\mathrm{p} - \frac{1}{2} \left[\phi_\mathrm{b} + \phi_\mathrm{r} \right] \right\} \sin^2 \theta \sin 2\varphi \\ \eta_V &= \frac{\eta_0}{2} \left[\phi_\mathrm{r} - \phi_\mathrm{b} \right] \cos \theta \end{split}$$

$$\begin{split} \rho_Q &= \frac{\eta_0}{2} \left\{ \psi_\mathrm{p} - \frac{1}{2} \left[\psi_\mathrm{b} + \psi_\mathrm{r} \right] \right\} \sin^2 \theta \cos 2\varphi \\ \rho_U &= \frac{\eta_0}{2} \left\{ \psi_\mathrm{p} - \frac{1}{2} \left[\psi_\mathrm{b} + \psi_\mathrm{r} \right] \right\} \sin^2 \theta \sin 2\varphi \\ \rho_V &= \frac{\eta_0}{2} \left[\psi_\mathrm{r} - \psi_\mathrm{b} \right] \cos \theta \end{split}$$

Let's understand a simplified case, only I-V interaction

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} \eta_I & 0 & 0 & \eta_V \\ 0 & \eta_I & 0 & 0 \\ 0 & 0 & \eta_I & 0 \\ \eta_V & 0 & 0 & \eta_I \end{pmatrix} \begin{pmatrix} I - B_v(T) \\ Q \\ U \\ V \end{pmatrix}$$

And that turns into:

$$\frac{dI}{d\tau} = \eta_I I - \eta_I B + \eta_V V$$

$$\frac{dV}{d\tau} = \eta_V I - \eta_V B + \eta_I V$$

Do the good old, add, subtract thingie:

$$\frac{d(I \pm V)}{d\tau} = (\eta_I \pm \eta_V)(I \pm V - B)$$

These are two RTE that we can solve separately. (Boundary contidion I = B, V = 0), and we get something like this:

$$\eta_{I} = \frac{\eta_{0}}{2} \left\{ \phi_{0} \sin^{2} \theta + \frac{1}{2} \left[\phi_{+1} + \phi_{-1} \right] \left(1 + \cos^{2} \theta \right) \right\} \qquad \eta_{V} = \frac{\eta_{0}}{2} \left[\phi_{-1} - \phi_{+1} \right] \cos \theta$$

$$\eta_{V} = \frac{\eta_{0}}{2} \left[\phi_{-1} - \phi_{+1} \right] \cos \theta$$

Why do polarization profiles look like this?

"Quiet-ish" Sun observed with HINODE/SOT SP

Before we go to play, lets look into this

"Selective absorption"

Uneven population of Zeeman subl-levels leads to the "polarization" of the atomic levels.

This leads to the net linear polarization of the light.

from Trujillo Bueno (2003)

Scattering line polarization – comparison with Zeeman

Scattering polarization and Hanle effect

In this case, the anisotropy is broken by the radiation field \rightarrow atomic polarization

Zeeman vs Hanle

Summary

- We describe the polarization with the Stokes vector and look how it changes throughout the atmosphere
- Matter influences the Stokes vector through processes of selective absorption, retardation etc. This are all microscopic in essence.
- We mostly use Zeeman effect
- Different Δm transitions have different polarization. It is always true. Breaking energy degeneracy makes them show up.
- There are different degrees of the realism when we want to model this.
- One of them is so called Milne-Eddington model. Let's play with that and we will use it in the hands-on next week.
- http://research.iac.es/proyecto/magnetism/pages/codes/milne-eddington-simulator.php