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Summary

• In the previous lecture we have seen what is radiative transfer

equation and how it “produces” the spectra we see.

• We will now delve a bit deeper in the microphysics.

• How to calculate, opacity, emissivity and the source function for

given model atmosphere?

• What physical parameters are important for the spectral line

formation?
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But before that, some reminders

Our tool for spectra calculation 1D, time indepedent RTE:

dI (z , θ, λ)

dz
= −χ(z , λ)I (z , θ, λ) + j(z , θ, λ),

that we usually cast as:
dIλ
dτλ

= Iλ − Sλ.

And the formal solution (once we know opacity and emissivity):

I+
λ = I 0

λe
−τλ +

∫ τλ

0

S(t)e−tdt

We can generalize this to any upper and lower point.
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Some reminders

IA = IBe−∆τAB +

∫ ∆τAB

0

S(t)e−tdt

∆τAB =

∫ A

B

χ(s)ds
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Spectrum formation

So, technically speaking, emergent spectrum is a functional of the

opacity and emissivity distributions:

I+
λ = F [χλ(z), jλ(z)] .

But we already intuitively feel that opacity and emissivity depend on the

physical conditions:

χ, j = f (T , ρ, ne , v ,B...).

Ok sharpen your pencils and let’s deconstruct this.
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Line processes

Contrary from all the other textbooks, we will start with the spectral

lines. Why?

• We are interested in the diagnostics, spectral lines excell there.

• Line absorption/emission is easy to understand, as it is a discrete

process.

• Expressions are actually simpler and we will relate them more easy

to statistical physics.

• We will not talk about continuum formation. Look up last years’

lectures if you want to know more.
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Spectral line emission

In line (bound-bound) transitions, photons are created and destroyed in

descrete processes.

Say that we have nu excited atoms in unit volume, what happens then?

How to calculate the emissivity? Remember, the emissivity is:

j(Ω̂, λ) =
dI (z , θ, λ)emitted

dz
=

d5E emitted

dσ dΩ̂ dt dλ dz
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Spectral line emission

Step by step: Notice that d5E = d5N hc/λ0 (λ0 because everything

happens close to the line core)

d2N

dσ dz
=

d3N

dx dy dz
= nu

So:

j ∝ nu

. Then, assume that the emission is isotropic:

d

dΩ̂
→ 1

4π
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Spectral line emission

Emissivity is proportional to the density of emitters:

j =
dI

dz
∝ d

dz

dN

dxdy
=

dN

dV
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Spectral line emission

Now, d/dt is tricky. Imagine you have an ensemble of excited atoms,

that you somehow keep excited (i.e. as soon as one emits a photon, you

flip it back).

There should be some quantity that tells us how often, on average, an

atom radiatively de-excites. It is called Einstein coefficient of

spontaneous emission Aul .

For lines of interest to us Aul ≈ 105 − 108s−1.

So, at the moment: j ∝ nu
hc

4πλAul .
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Spectral line emission

Finally, wavelength dependence.

If the line transitions were really discrete, line profiles would be delta

functions. So, we would have:

j(λ) = nu
hc

4πλ
Aulδ(λ− λ0).

Are the units ok? Well: ∫ ∞
0

δ(λ− λ0)dλ = 1.

So, the units of the “line profile” have to be [Å]−1.
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Line profile

Apparently, line profiles are not delta functions:

Take a moment to appreciate this fact. Use this useful website.
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Line profile

Let’s assume that the emission line profile is a delta function, in the

frame of the atom. Atoms however, are moving, according to the

Maxwell distribution:

f (v)d3v = (
m

2πkT
)3/2 exp(−m|v |2/2kt)d3v .

What we need is the projection to our line of sight (z for simplicity):

f (vz) dvz =
1√
π∆vD

exp(−v2
z /∆v2

D).

Where Doppler velocity, ∆vD is:

∆vD =
√

2kT/m.

So, higher the temperature, wider the lines.

Also, heavier the element, more narrow the lines.
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Doppler profile

Now, dn(vz) = nuf (vz). Atoms with line-of-sight velocity vz will emit at

the wavelength λ′ = λ(1 + vz/c) (negative velocity is toward the

observer). To get the complete profile:

φ(λ) =

∫ ∞
−∞

δ(λ′ − λ0)nuf (vz)(1− vz/c)dvz .

In this situation delta function integrates out. So, we get simply:

φ(λ) = 1/(
√
π∆λD) exp(−(λ− λ0)2/∆λ2

D)

Units check out (Å
−1

). Keep in mind that for arbitrary “intrinsic”

broadening profile, composite profile, that takes into account the

influence of thermal broadening would be:

φ(λ) = φ0(λ) ∗ φDoppler(λ)
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Doppler profile

It is customary to define total emissivity:

j = nu
hc

4πλ0
Aul

1

∆λD
,

and then

j(λ) = j φ(λ).

Now you were saying something about an “intrinsic profile”? Before

that...
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Mystery of microturbulence

It turns out the spectral lines are broader than they should be.

Let’s spend a minute to calculate width (in km/s) of an example Iron line

in the photosphere:

∆vD =

√
2kT

m
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Mystery of microturbulence

It turns out the spectral lines are broader than they should be.

Let’s spend a minute to calculate width (in km/s) of an example Iron line

in the photosphere:

∆vD =

√
2kT

m
≈ 1km/s

However, we often see spectral lines that imply width of, say, three times

that.

This would imply 9 times greater temperature (50KK). There is no

neutral iron at that temperature.

That is why I am calling it “mystery”.
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Mystery of microturbulence

Microturbulence is an ad hoc parameter, added in the early days of

spectra modeling.

The idea was to reproduce properly the width of spectral lines.

Is microturbulence really “turbulence”? t could be, but does not have to

be, it could be any unresolved velocity.
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Mystery of microturbulence

We model microturbulence as small scale motion. Basically an additional

Gaussian distribution that convolves our Gaussian velocity distribution.

So, in that case, our Doppler velocity becomes:

∆vD =

√
2kT

m
+ v2

mt

For heavy atoms (ions), microturbulence is more important, for light ones

(H, He), temperature is more important!
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Effects of microturbulence

Why are both the lines identical in the center and differ in the wings?
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Natural broadening

So far, we have assumed that in the frame of the atom, emission is a

delta function.

What does this mean? (Keep in mind that we are talking about an

ensemble of atoms, no matter how small nu is, it has to be large enough

so that averaging makes sense).

This means every atom has exactly the same energy of the upper and

lower level.

That is not strictly true... ∆E∆t ≈ ~.

Natural broadening, in frequency units ΓR = 1
∆t = Aul

(Actually
∑

l′<u Aul′).
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Voigt profile

So, in practice, we have the convolution of the natural, Lorenzian shape,

and the Doppler profile. It is called Voigt profile:

Figure 1: credits: Wikipedia
22



Collisional broadening - “damping”

We said that natural broadening appears because averaging over the

ensemble (and, well, time!) smears out the photon energy. There is

another effect like that.

”Collisional” or ”pressure” broadening.

Electric fields of the surrounding particles disturb the energy

configuration of the atom.

Linear Stark (∝ r−2), Quadratic Stark (∝ r−4), van der Waals (∝ r−6).
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Effect of damping

Figure 2: Mg I b2 line calculated from an emipirical model atmosphere
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Line opacity

So far, in all the calculations we have seen, there was some opacity

involved. How to calculate that?

Classically, we can describe opacity with a cross-section per particle,

σ [cm2], then:

χ = σ × nabsorbers.

But, it would be good to have similar expression to the one for the

emissivity. If there only was a way....

χλ = nl
hc

4πλ
Bluφ(λ).

Blu is Einstein coefficient of absorption.
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Stimulated emission

We considered radiative excitation (absorption), and spontaneous

radiative de-excitation (spontaneous emission). What about stimulated

de-excitation (stimulated emission)?

Figure 3: credits: Wikipedia
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Stimulated emission

So in stimulated emission from one photon we get two, in absorption,

from one photon we get zero.

Stimulated emission is exactly the same like absorption, just the opposite.

So:

χλ = (nlBlu − nuBul)
hc

4πλ
φ(λ).
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Ingredients

Final recipe for spectral synthesis:

• Find all the atomic data for the lines you want to consider.

• Calculate populations of relevant atomic levels (how? - discuss 5

mins)

• Calculate all the broadening effects, and thus the profiles

• Do this for each point in the atmosphere and obtain opacity and

emissivity, at each wavelength.

• Add other opacity / emissivity sources (H-, electrons, Bound-free,

Free-free)

• Solve radiative transfer equation and obtain spectrum.
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Source function in the line

Assume the line processes dominate:

jλ
χλ

=
nuAul

nlBlu − nuBul

In LTE, this needs to be equal to the Planck function:

nuAul

nlBlu − nuBul
=

2hc2

λ5

1

exp(hc/λkT )− 1

From here we can derive relationships between A and B’s.

Another important point: For optical domain, usually nl >> nu, and if nl
is the ground level, most of the electrons are there. So the value of the

source function is set by nu. More on this when we talk about NLTE.
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Relationships between Einstein coefficients

From the previous slide, taking into account Boltzmann distribution, it is

straightforward to derive:

Bulgu = Blugl

Aulgu
Blugl

=
2hc2

λ5

We will need this for our hands-on next week!
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Summary

We “derived” expressions for emissivity and opacity due to the spectral

line processes.

Spectral lines are important because they are sensitive to a variety of

physical processes and to variety of depths (remember that the opacity

changes dramatically).

We now have a vague idea how to calculate the emerging spectrum.
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Next lecture

We will...

... show how to calculate “populations” nu, nl .

... introduce “height of formation”, contribution function, response

function.

... try to discuss how different spectra lines carry different diagnostic

potential.
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