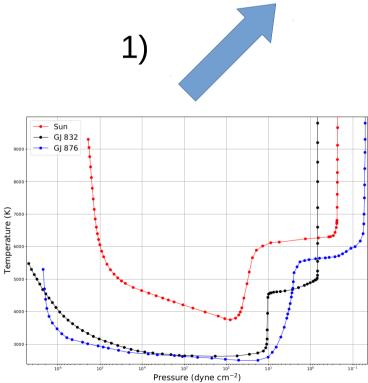
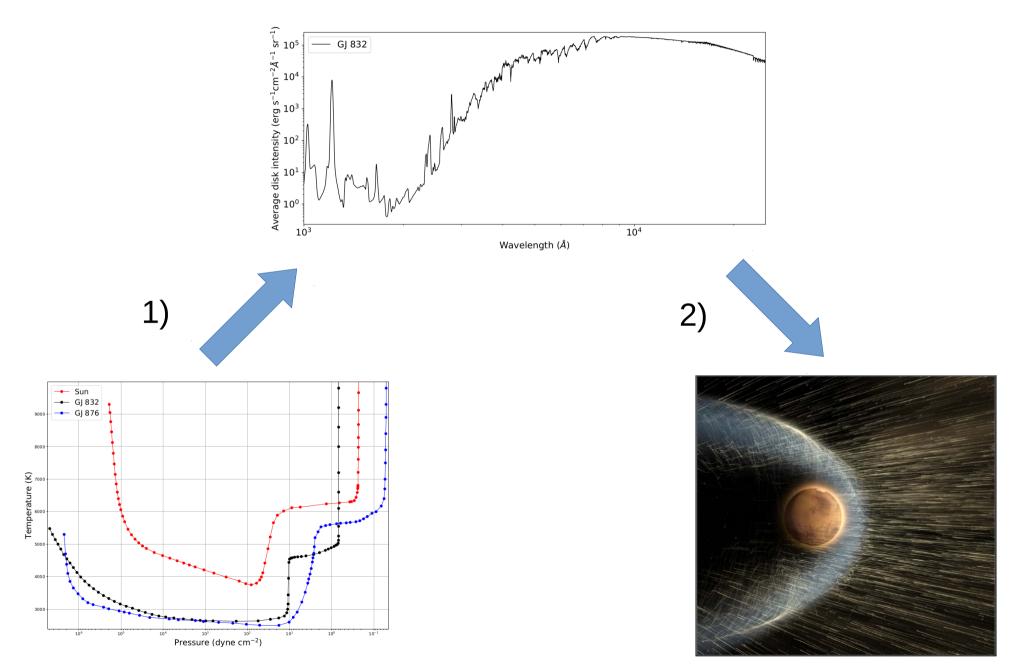

Stellar Models


Solar Focus Group Meeting 12 Dennis Tilipman 4/12/2019

Outline


- Why stellar models are important
- What is being done
- Our approach
- Our results and future work

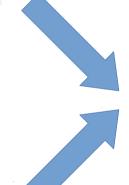
Why stellar models are important

Why stellar models are important

What is being done

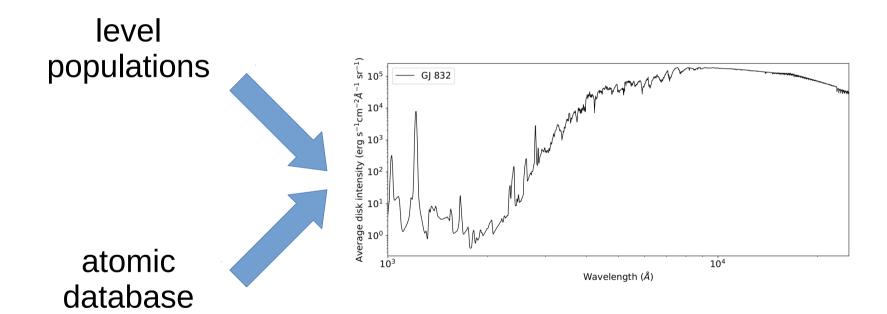
- Fitting of individual lines (Ca II H & K lines, Hα, etc.)
- Grids of star photospheres (e.g. PHOENIX) and their adaptations (e.g. TRAPPIST-1 model by Peacock et al. 2018)
- 3-D MHD simulations (e.g. STAGGER-grid)

Our approach

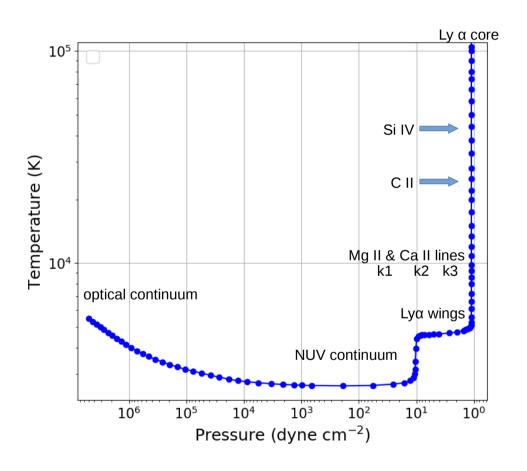

We study 1-D semi-empirical models of cool stars

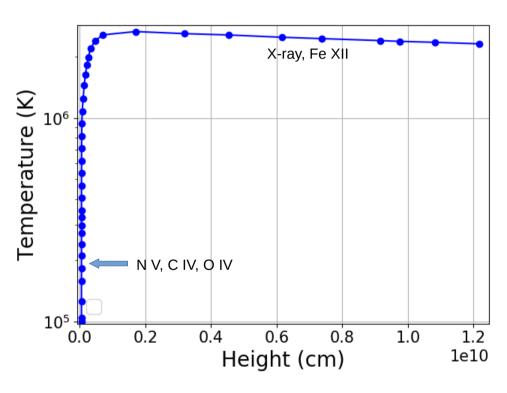
We use SSRPM – full NLTE radiative transfer code with 18,500+ levels, and 436,000 atomic lines, along with 20,000,000+ molecular lines from 20 molecules – to compute high-res synthetic spectra in all wavelengths

SSRPM heuristic

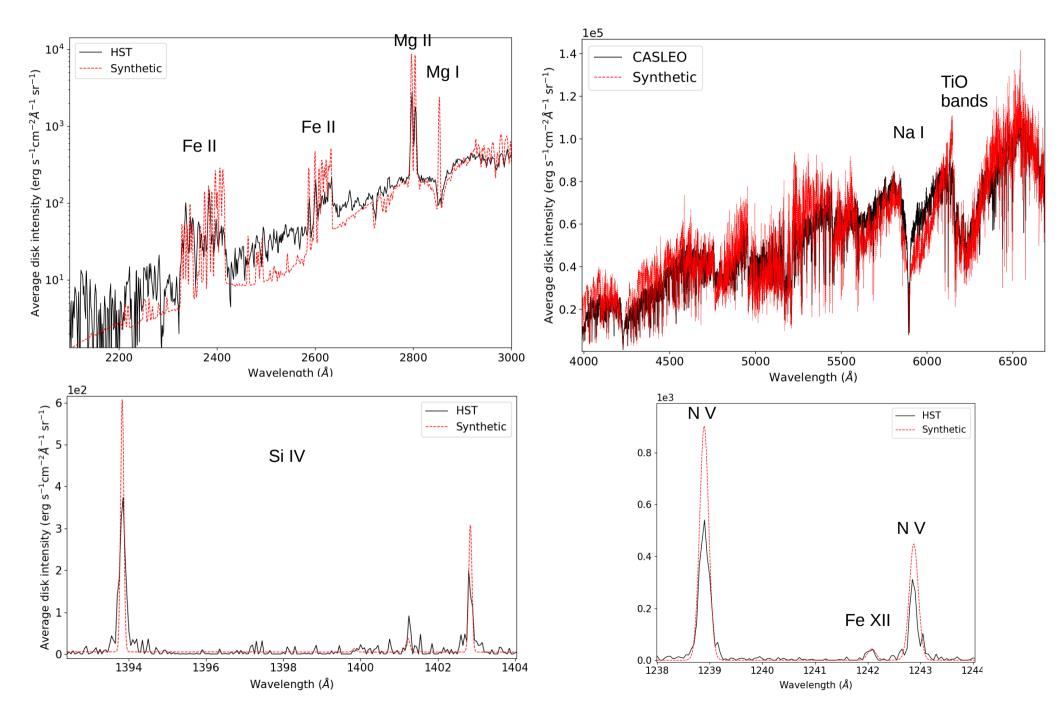

1 1	L Model: 3349												
2 Description: GJ832													
3 Heights: 87 AbundanceSetId=4													
4 1	Ind,	Height .	Temperature .	ne .	np .	na ,	nh .	vt .	accel .	bHminus .	vel .	bH2 .	bH2plus
5	0	5.051600000000e+007	1.000000000000e+005	2.515106e+010	2.125335e+010	1.661685e+005	2.125352e+010	5.200000e+005	0.000000e+000	5.256247e+003	0.000000e+000	5.256245e+003	1.000000e+000
6	1	5.049800000000e+007	9.000000000000e+004	2.742947e+010	2.339430e+010	6.934520e+008	2.408775e+010	5.200000e+005	0.000000e+000	4.813374e+003	0.000000e+000	4.806273e+003	1.000000e+000
7	2	5.048800000000e+007	8.000000000000e+004	3.026287e+010	2.631859e+010	1.323789e+009	2.764238e+010	5.200000e+005	0.000000e+000	4.320407e+003	0.000000e+000	4.310306e+003	1.000000e+000
8	3	5.048600000000e+007	7.400000000000e+004	3.245389e+010	2.863584e+010	1.487252e+009	3.012310e+010	5.200000e+005	0.000000e+000	3.998201e+003	0.000000e+000	3.988973e+003	1.000000e+000
9	4	5.048450000000e+007	6.600000000000e+004	3.614698e+010	3.237245e+010	1.621326e+009	3.399378e+010	5.200000e+005	0.000000e+000	3.536597e+003	0.000000e+000	3.529295e+003	1.000000e+000
10	5	5.048390000000e+007	5.800000000000e+004	4.102405e+010	3.700250e+010	1.779202e+009	3.878170e+010	5.200000e+005	0.000000e+000	3.038703e+003	0.000000e+000	3.033249e+003	1.000000e+000
11	6	5.048300000000e+007	5.000000000000e+004	4.759149e+010	4.304156e+010	1.942528e+009	4.498409e+010	5.200000e+005	0.000000e+000	2.507700e+003	0.000000e+000	2.503979e+003	1.000000e+000
12	7	5.048240000000e+007	4.400000000000e+004	5.406746e+010	4.896869e+010	2.162652e+009	5.113134e+010	5.200000e+005	0.000000e+000	2.092670e+003	0.000000e+000	2.089968e+003	1.000000e+000
13	8	5.048090000000e+007	3.800000000000e+004	6.244595e+010	5.675347e+010	2.597046e+009	5.935051e+010	5.200000e+005	0.000000e+000	1.670651e+003	0.000000e+000	1.668712e+003	1.000000e+000
14	9	5.047930000000e+007	3.300000000000e+004	7.136934e+010	6.558521e+010	3.249092e+009	6.883430e+010	5.200000e+005	0.000000e+000	1.321573e+003	0.000000e+000	1.320129e+003	1.000000e+000
15	10	5.047800000000e+007	2.800000000000e+004	8.244238e+010	7.854820e+010	4.098554e+009	8.264676e+010	5.200000e+005	0.000000e+000	9.848304e+002	0.000000e+000	9.838600e+002	1.000000e+000
16	11	5.047680000000e+007	2.500000000000e+004	9.080286e+010	8.900730e+010	4.955459e+009	9.396275e+010	5.200000e+005	0.000000e+000	7.937532e+002	0.000000e+000	7.930092e+002	1.000000e+000
17	12	5.047560000000e+007	2.200000000000e+004	1.020974e+011	1.015740e+011	6.195575e+009	1.077695e+011	5.200000e+005	0.000000e+000	6.147650e+002	0.000000e+000	6.142266e+002	1.000000e+000
18	13	5.047420000000e+007	2.000000000000e+004	1.116684e+011	1.114396e+011	7.693527e+009	1.191331e+011	5.200000e+005	0.000000e+000	5.040072e+002	0.000000e+000	5.035714e+002	1.000000e+000
19	14	5.047290000000e+007	1.740000000000e+004	1.277874e+011	1.276543e+011	9.803072e+009	1.374573e+011	5.200000e+005	0.000000e+000	3.724420e+002	0.000000e+000	3.721544e+002	1.000000e+000

$$\begin{split} C_{1i} + A_{i1}V_{i1} &= (C_{i1}\tilde{I} + A_{i1}\tilde{R}_{i1})\sigma_i + \sum_{j < i} [(C_{ij}\tilde{I} + A_{ij}\tilde{R}_{ij})\sigma_i - \\ &- (C_{ji} + A_{ij}V_{ij})\tilde{I}\sigma_j] - \sum_{j > i} [(C_{ji}\tilde{I} + A_{ji}\tilde{R}_{ji})\sigma_j - \\ &- (C_{ij} + A_{ji}V_{ji})\tilde{I}\sigma_i] \,, \end{split}$$

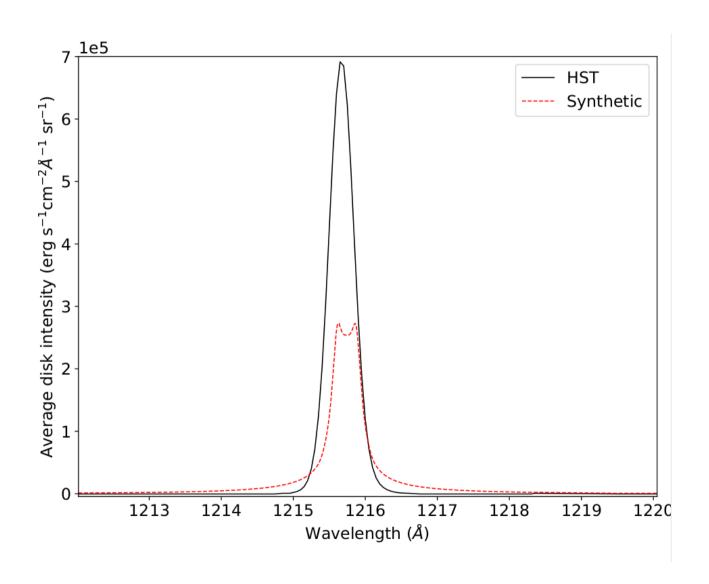


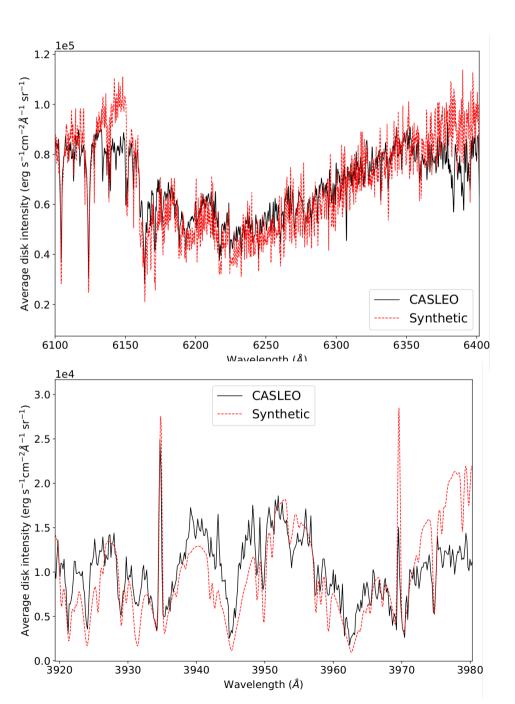

level populations

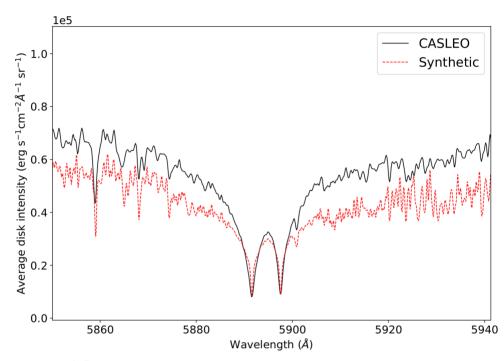
SSRPM heuristic

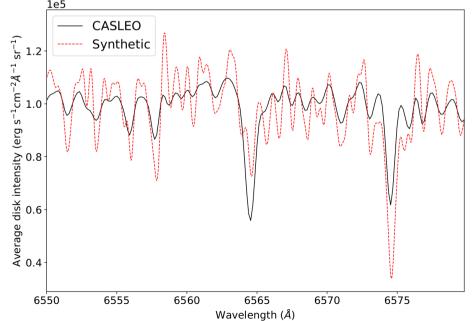


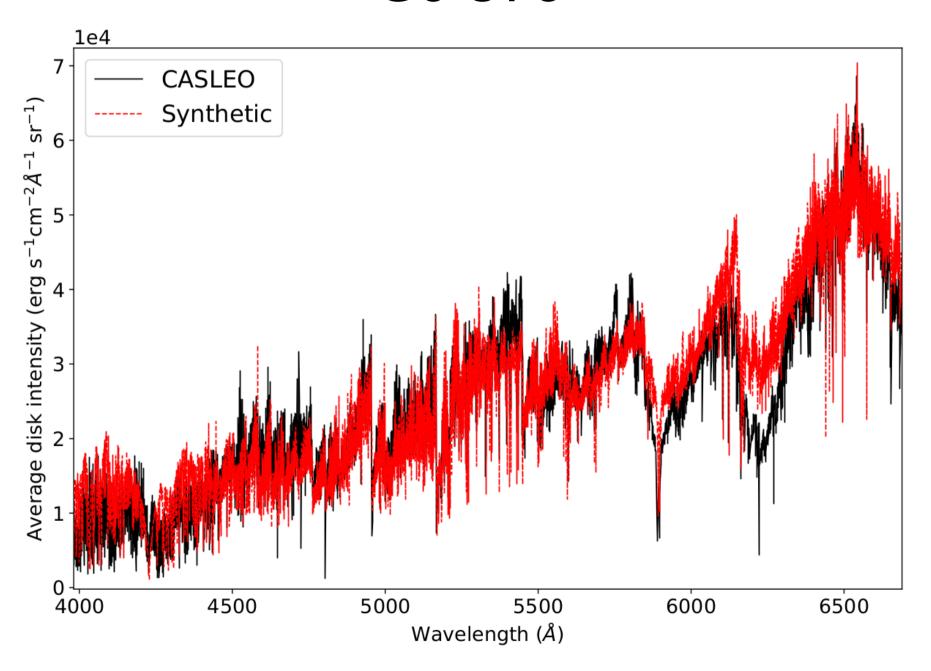
Getting the model right: GJ 832

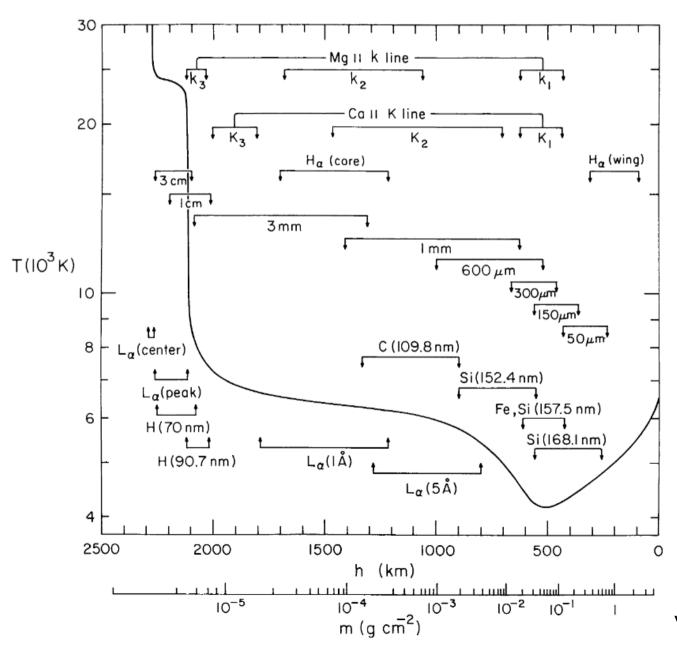

Some results: GJ 832


Ongoing and future work


- We are currently finishing up the models of GJ 832 (M 2.5 dwarf) and GJ 876 (M 5 dwarf)
- Next up is creating a model for TRAPPIST-1 ultra-cool M 8 dwarf
- Solve Mg I and Ly α problems
- Create a manual for SSRPM and make the code publicly available


GJ 832 lines


GJ 832 lines



GJ 876

Getting the model right

