

Spectropolarimetric Capabilities of DKIST: Looking Ahead to ALMA Cycle 6 and Beyond

Tom Schad National Solar Observatory ALMAIRISDKIST - 16 March 2016

Multi-scaled polarimetry with DKIST

The Sun is a multi-scaled, dynamic object, organized in its outer layers by its magnetic field.

 Magnetic field intensity scales of 1000s of Gauss to ~ 1 Gauss magnitudes between the photosphere and the corona.

Polarization in UV/O/IR spectral lines is DKIST's primary means for the remote quantization of solar magnetic fields.

- Zeeman/PB effect:
 - Stokes V linearly scales with longitudinal field intensity.
 - Q/U scales with the square of transverse field intensity.
 - Zeeman sensitivity scales linearly with the wavelength (IR) and Lande factor (IR)
- Scattering polarization and Hanle mechanism
 - Hanle sensitivity depends on ratio of level lifetime and magnetic splitting (UV).
 - Scattering polarization amplitudes depend scattering angle, the degree of local anisotropy (typically <1%) and the Hanle modification.
- DKIST must measure magnetic fields via high precision spectropolarimetry with signals < 1% from the photosphere to the dark IR (10⁻⁶ B_{sun}) corona!

DKIST High-Level Performance Requirements

Requirement	Value
Aperture	4 meters
Photon Flux	Minimum collecting area > 12 m ²
Polarization sensitivity	10 ⁻⁵ lc
Polarization calibration accuracy	5 x 10 ⁻⁴ lc
Scatter light (5 -50 arcsec above limb)	< 10 ⁻⁴
Scattered light (1.1 Rsun; 1 micron)	<25x10 ⁻⁶ Bsun

Meeting the polarimetric requirements

Polychromatic crystal wave-plate polarization modulators

- Most facility instruments equipped with polychromatic high-efficiency modulators in custom, precision rotation stages.
- Tight modulation tolerances plus high duty-cycle.

High frame rate / dual-beam polarimetry

 Polarimeter cameras operate, in most cases, at > 30 fps to reduce the impact residual seeing uncorrected by AO.

Facility polarization calibration optics and procedures

- Large crystal optics at Gregorian focus provide polarization states for calibrating all time-dependent optics downstream.
- M1/M2 calibration baseline is to use "correlation method" based on as measured Zeeman signals in high field regions.

The O/IR chromospheric polarimetry toolbox

Spectral Lines	Formation	Tools/references
Ca II H & K	Non-LTE; partial redistribution; Zeeman and scattering polarization diagnostic.	[Martinez Pillet et al. 1990; Holzreuter et al. 2006]
Ca I 422.67 nm	Non-LTE; partial redistribution	
Hα (656.3 nm)	Non-LTE; Large photospheric contributions in Stokes V	[Socas-Navarro & Uitenbroek 2004; Stepan & Trujillo Bueno 2010[
He I D ₃ (587.6 nm)	Non-LTE; Very weak on disk; good prominence and filament diagnostic	Inversions: Hazel [Asensio Ramos et al.]; Helix+ [Lagg et al.]
Ca II IRT (849.8, 854.2, 866.2 nm)	Non-LTE; 1D inversions show promise.	Inversions with Nicole [Socas-Navarro et al.]
He I (1083 nm)	Non-LTE; Promising upper chromosphere diagnostic. Weak outside of active regions	Inversions: Hazel [Asensio Ramos et al.]; Helix+ [Lagg et al.]
Ca I 3697.4 nm	g _{eff} = 1.1	
Mg I 3681.6 nm	g _{eff} = 1.17	
IR molecular lines? CO?		

DKIST – The User Perspective

Flexible and controlled operation for optimized study of diverse science

- 5 permanently-installed facility instruments ranging 350 nm to 5 μm
- Diverse technologies: narrowband imaging (Visible to 5 um!), Slit-based spectropolarimetry; Fabry-Perot 2D-spectropolarimetry; IFU spectropolarimetry
- Manually configurable distribution of light to AO-instruments (350 nm to 1800 nm)
- Simultaneously multi-instrument experiments

Operational model to boost ground-based efficiency

- Majority in PI based service mode
 - Merit and condition-based mode.
- Data will be public domain (embargo available for graduate student data)
- Calibrated data sets will be the primary data product of the NSO Data Center.

Early Science operations start in 2019!

DKIST Instrumentation

VISP: 500 – 900 nm Three channel Slit-based Spectropolarimeter

DL-NIRSP: 500 – 1800 nm Three Channel IFU Spectropolarimeter

CRYO-NIRSP: 1000 – 5000 nm Filter Imager + Slit-Based Spectropolarimeter

VBI: 390 – 860 nm Two-channel Narrowband (Speckle) Imager

More detailed specifications at dkist.nso.edu/science/

Helium Intensity / Continuum Intensity

Continuum Intensity

One tile at a time, DL-NIRSP builds spectropolarimetric full data cubes: [X ; Y ; λ ; S [=I,Q,U,V] ; t]

Assessing polarimetric performance in the chromosphere

- The photon flux at the diffraction-limit is independent of aperture size. A bigger telescope doesn't alleviate being photon starved at the diffraction limit.
- Balance evolution time-scale with required signal to noise to arrive at physical scale over which the observation can be considered static...

$$\Delta t_s = \frac{n}{0.577 * F(\lambda, \delta\lambda, \delta t, \delta x)\sigma^2(\delta x)^2}$$

$$\Delta t_e = \frac{2(\delta x)}{v} \qquad \qquad \delta x = \frac{(nv)^{1/3}}{2(0.577 * F(\lambda, \delta\lambda, \delta t, \delta x))^{1/3} \sigma^{2/3}}$$

□ How to determine values for v and \sigma ?

Forward modeling by de la Cruz Rodriguez et al. (2012):

Quiet Sun magnetism returned via an inversion of Ca II 854.2 nm

Example DKIST parameters:

n = 1 $\sigma = 10^{-4}$ $v \sim 50 \text{ km/s}$ 50 mA FWHM $F \sim 3.7e9 \text{ photons/asec}^2/\text{sec}$

 $(\delta x) \sim 0.074 \text{ arcsec}$ $(\delta t) \sim 2.13 \text{ seconds}$ Diffraction limit: 0.054

$$\delta x = \frac{(nv)^{1/3}}{2(0.577 * F(\lambda, \delta\lambda, \delta t, \delta x))^{1/3} \sigma^{2/3}}$$

 \rightarrow effective resolution for DL-NIRSP /or ViSP

Ca II - Stokes Q/I (-150 mÅ) Call - Stokes I (-150 mÅ) Ca II - Stokes V/I (-150 mÅ) **50** · 40 Y [arc-sec] 30-20 20 30 X [arc-sec] 20 30 X [arc-sec] 40 50 10 50 10 20 30 X [arc-sec]

Linear polarization outside of sunspots is very weak in Ca II 854.2 nm

Fig. 15 CRISP Stokes *I*, Q/I, and V/I filtergrams at $\Delta \lambda = -150$ mÅ from the core of the Ca II 854.2 nm line (adapted from de la Cruz Rodríguez et al. 2013). The boxes mark the regions for which a detailed analysis of umbral flashes and running penumbral waves was performed.

He I 1083 has strong scattering polarizations profiles in superpenumbra

Schad et al. (2013)

550 560 570 580 550 560 570 X [Arcsec] X [Arcsec]

ALMAIRISDKIST-2016

(without readout and processing time) resulted in a noise level of $7-10 \times 10^{-4}$ of the continuum intensity.

580

He I 1083 can be inverted with simple cloud models (non-LTE polarization)

Challenges include presence of ambiguities, lack of height information, height vs inclination degenerencies.

Umbral profiles are not well modeled.

DST/FIRS He I 1083 nm

(Like D3, used for prominences and filaments: e.g., Kuckein et al. 2012)

This example is of on disk coronal rain polarimetry + Stereoscopic reconstruction

ALMA/DKIST Joint Observing Strategies

ALMA configurations (C40-1,-2,-3) [SSALMON CYCLE 4 Document]:

C40-1: Longest baseline (160.7 m) C40-2: Longest baseline (376.9 m) C40-3: Longest baseline (538.9 m)

Tight configurations require Sun at elevations > 40 degrees to avoid shadowing.

DKIST opening procedures and light level will limit observation ~ > 7 deg

1 to 2 hours of coordinated observing time is possible

ID	INT-1
Name	FAST
Description	high-cadence single-point sit-and-stare
Pointings	1
Temporal resolution/ cadence	2 s per map
Duration	60 min (default) Many science cases request shorter sequences but could use INT- l data, too.
Receiver band (as requested for the science cases) Target	 only 3: H2, J1 only 6: G3, G6, G7, G8 first 3, then 6: default. Versatile (see comments in table below).
Science cases	G1-G8, H2, J1, J2, L4
Number	12

ID	INT-1	
Name	FAST	
0:00	Array +	
	receiver setup	
	Band 3	
0:05	Initial	
	calibration	
	Band 3	
0:30	Calibration	
	Band 3	
0:35	Science Band 3	
	cadence 2 s	
	180 maps	
0:40	Calibration	
	Band 3	
0:45	Science Band 3	
	cadence 2 s	
	180 maps	
0:50	Calibration	
	Band 3	
0:55	Science Band 3	
	cadence 2 s	
	180 maps	
1:00	Calibration	
	Band 3	
1:05	Science Band 3	
	cadence 2 s	
	180 maps	
1:10	Calibration	
	Band 3	
1:15	Science Band 3	
	cadence 2 s	
	180 maps	
1:20		
	~	

Switch to Band 6 and repeat

DKIST/ALMA coordination – an example

What is a complementary polarimetry-focused DKIST **Experiment?**

Step #1: Define science objectives....

Step #2: Identify candidate spectral lines and data types...

Step #3: Assess feasibility

- 1) Light distribution (beam-splitter) tool
- 2) Aggregate data rates (using standard modes)
- 3) Instrument performance calculators (*define observing parameters...FOV, slit size, etc.*)
- ... once successful

Step #4: Prepare and submit proposal

DKIST/ALMA coordination – an example

ID Name	INT-1 FAST	Beam-split	ters:	[BS_555,WI_002,BS_680,MI_002]						
Description high-cadence single-point sit-and-stare Pointings 1	high-cadence single-point	Data Type	lnstru- ment	Line	FOV	Spatial Res	Cadence	SNR	Data rates	
	2D spectrosco pic imaging	VTF	Hα 656.3 nm	58" x 58"	0.028" x 0.028"	3.6	> 850	1920 MB/sec		
Temporal resolution/ cadence	2 s per map	Slit ce scanning tst full-Stokes			Ca II K 393 nm	21'' x 60"	0.21" x 0.06"	35 minutes	> 300 (**)	27 MB/sec
Duration 60 min (default) Many scien cases reque shorter	(default) Many science cases request shorter sequences but		Slit scanning full-Stokes VISP polarimetr y	Ca I 422.67 nm	21" x 60"	0.21" x 0.06"	35 minutes	> 700 (**)	27 MB/sec	
	sequences but could use INT- 1 data, too.	У		Fe I 525 nm	21" x 60"	0.21" x 0.06"	35 minutes	> 1400 (**)	27 MB/sec	
Receiver band (as requested for the	• only 3: H2, J1 • only 6: G3, G6, G7, G8			Ca II 854.2 nm	23" x 25"	0.15"	23 sec	>2000 (5 x 10^-4)	55 MB/sec	
science cases)	• first 3, then 6: default. Versatile (see comments in	a, then fault. tile spectropol	IFU Full- Stokes spectropol	DL- NIRSP	Si 1082.7 nm / He I 1083 nm	23" x 25"	0.15"	23 sec	>2000 (5 x 10^-4)	55 MB/sec
Science cases	table below). ence G1-G8, H2, ses J1, J2, L4	arimetry	arimetry	Fe I 1565 nm	23" x 25"	0.15"	23 sec	>2000 5 x 10^-4	55 MB/sec	
Number	12	1 ** Lower bound on performance? (TBD) Aggregate data rate: 2166 MB/se				ate: 2166 MB/sec				

Closing remarks

- DKIST will be the world's most powerful optical/IR solar telescope, and a precision polarimeter designed for multi-scale experiments.
- Its fleet of five facility instruments offers a highly customizable experiment platform that may be optimized for any number of problems.
- Optimizing the DKIST experiment for chromospheric polarimetric application should take advantage of the aperture's size more than its diffraction limit.
- □ A 1-2 coordination is available for ALMA and DKIST, and such observations are certain to provide important constraints on the magnetically coupled solar atmosphere.

dkist.nso.edu/science

dkist.nso.edu/CSP

Extra slides

DKIST and ALMA Synergies

ALMA Strengths	DKIST Strengths	
Continuum radiation at millimeter wavelengths acts as a linear thermometer in narrow layer in the solar atmosphere.	Host of deep NLTE optical lines provide polarimetric probe of chromospheric layers, but DKIST probes photospheric layers very well.	solar hi-res high- radio solar resolutio
The polarization provides a measure of the longitudinal magnetic field component in the same layer in the solar atmosphere.		ALMA science numerical simulations
The height of the probed atmospheric layers increases with the selected wavelength, enabling height scans through the solar atmosphere and tomographic techniques.	DKIST can access photospheric and coronal magnetic fields.	Wedemeyer et al. (2015) SSRv

High-res MxSPEC Experiment at the Dunn Solar Telescope (Preliminary Data)

(Slide courtesy of Roberto Casini)

ViSP Flux Budget

(based on DKIST/ViSP flux estimates)

Andor Zyla 5.5 40 fps, 27000 e⁻ max accumulation 10 s integration time Wavelength scaled slit width

Shadow-cast grating

Ion / Line	Wavelength	N/S	
	nm	Integ. / resol.	
Ca II K-line	393.33	4.7E-03	
Ca II H-line	396.80	4.2E-03	
CH G-band	430.50	1.4E-03	
Blue continuum	450.40	1.2E-03	
Sr I	460.73	8.7E-04	
H-beta	486.13	1.1E-03	
Fe XIV	530.30	9.0E-04	
Green continuum	555.00	5.0E-04	
He I D3	587.60	5.1E-04	
Na I D2	589.00	5.1E-04	
Fe I	617.33	4.6E-04	
Fe I	630.20	5.0E-04	
Fe X	637.00	5.4E-04	
H-alpha	656.30	5.4E-04	
Red continuum	668.40	3.4E-04	
TiO band	705.40	5.1E-04	
Fe XI	789.00	4.1E-04	
Na I	819.48	5.1E-04	
Ca II IR2	854.20	5.3E-04	
Fe XIII	1074.60	1.7E-03	
He I	1083.00	1.7E-03	

(Slide courtesy of Roberto Casini)

1.	Ca II K	393.37 nm	(photo/chromosphere)
2.	Ca II H	396.85 nm	(photo/chromosphere)
3.	Fe I	404.58 nm	(photosphere)
4.	Нδ	410.17 nm	(E-field diagnostics)
5.	Ca I	422.67 nm	(PRD)
6.	Нγ	434.05 nm	(E-field diagnostics)
7.	Ti I	453.60 nm	(second solar spectrum)
8.	Ba II	455.40 nm	(second solar spectrum)
9.	Sr I	460.73 nm	(Hanle effect)
10.	Нβ	486.13 nm	(chromosphere)
11.	Mg I b1	517.27 nm	(photo/chromosphere)
12.	Mg I b2	518.36 nm	(photo/chromosphere)
13.	Fe I	525.04 nm	(photosphere)
14.	Mn I	553.78 nm	(HFS)
15.	He I	587.59 nm	(prominences; spicules)
16.	Na I D2	589.00 nm	(photo/chromosphere; PRD)
17.	Na I D1	589.59 nm	(photo/chromosphere; PRD)
18.	Fe I	617.33 nm	(HMI)
19.	Fe I	630.20 nm	(Hinode/SP)
20.	Нα	656.28 nm	(chromosphere)
21.	Ni I	676.78 nm	(photosphere)
22.	Ca I	714.82 nm	(photosphere)
23.	Fe I	751.15 nm	(photosphere)
24.	ΚI	769.90 nm	(photosphere)
25.	Na I	818.33 nm	(photo/chromosphere)
26.	Na I	819.48 nm	(photo/chromosphere)
27.	Ca II	849.81 nm	(photo/chromosphere)
28.	Ca II	854.21 nm	(photo/chromosphere)
29.	Ca II	866.22 nm	(photo/chromosphere)
30.	Mn I	874.10 nm	(HFS)

Assumptions scalar theory of grating efficiency grating losses to reproduce "shadow cast" model (actual losses are TBD) 5% minimum grating efficiency (*) $-30.0^{\circ} < \beta - \alpha < -3.4^{\circ}$ grating: 316 l/mm, 63° blaze # combs. $63^{\circ} < \alpha < 73^{\circ}$ singlets: 30 30 (100.0%)pairs: (99.1%)435 431 (92.3%)triplets: 4060 3748 (*) assumes scalar theory, with 30% grating losses 15% minimum grating efficiency (*) $-30.0^{\circ} < \beta - \alpha < -3.4^{\circ}$ grating: 316 l/mm, 63° blaze # combs. $63^{\circ} < \alpha < 73^{\circ}$ singlets: (100.0%)30 30 pairs: (91.3%)435 397 triplets: (79.4%)4060 3223

(*) assumes scalar theory, with 30% grating losses

VTF Performance (Courtesy of Wolfgang Schmidt)

Description	Cadence	Data volume per line scan		
1. Spectropolarimetric imaging: Full Stokes data in dual beam mode	13 s	384 images per ca 2 x 12.8 Gbyte =	mera -> 25.6 GB	
2. Doppler imaging	3.6 s	96 images ->	3.2 GB	
3. Intensity imaging	0.8 s	12 images ->	0.4 GB	

VTF observing modes

Numbers are based on 8 accumulations per wavelength point and polarization state (SNR 650 after combining beams), and 12 wavelength points per line. Shorter cadence possible at the cost of SNR. Chromospheric lines may need more wavelength points to cover full line profile.

VTF: Selected spectral lines

Spectral line	Landé factor	Origin
Fe I 525.02	3	Photosphere
Fe I 543.4	0	Photosphere
Fe I 557.6	0	Photosphere
He I 587.5	≠0	Prominences
Fe I 617.2	2.5	Photosphere
Fe I 630.3	2.5	Photosphere
H I 656.3	≠0	Chromosphere
Ni I 676.8	1.5	Photosphere
Ca II 854.2	1.1	Chromosphere

The VTF observes one line at a time; up to 8 (tbd) lines can be observed sequentially. All lines within VTF wavelength range can be observed. A narrowband (0.8 – 1.6 nm) filter is needed for each line.

DL-NIRSP Expected Exposure Times (T.Schad)

		Expected Exposure Time [milliseconds]			
lon/Line	Wavelength [nm]	High Resolution Use Case (full well at disk center)	Coronal Use Case (15% of full well for 50 millionths I _{dc} bright corona)	Middle Resolution Use Case (full well at disk center)	
Fe XIV	530.30	110	1798	16	
Green cont.	555.00	94	1545	14	
He I D3	587.60	89	1454	13	
Na I D2	589.00	90	1474	13	
Fe I	617.33	87	1418	13	
Fe I	630.20	86	1409	13	
Fe X	637.00	84	1374	13	
H-alpha	656.30	99	1617	15	
Fe XI	789.00	118	1914	17	
Na I	819.48	151	2444	22	
Ca II IR2	854.20	237	3810	35	
Fe XIII	1074.70	76	1226	11	
He I	1083.00	79	1275	12	
Si X	1430.00	121	1978	18	
Fel	1565.00	83	1354	12	
S XI	1920.00	605	9813	89	
CO bands	2326.00	1180	18862	172	

