
Hale COLLAGE problem set 4 (SOLUTIONS)

We represent the non-thermal component of the electron distribution by the angle-averaged
distribution function f(v) defined so that the number density and energy density of non-thermal
electrons are

nnt =

∞
∫

0

f(v) dv , εnt = 1
2me

∞
∫

0

v2f(v) dv = 3
2me nnt v2

nt , (1)

where vnt is a characteristic velocity for the non-thermal electrons. The non-thermal distribution
function evolves according to the Fokker-Planck equation like that on slide 32 of lecture 18. We
will write this as

∂f

∂t
=

(

∂f

∂t

)

c
=

∂

∂v

[

K(v2 − 2v2
th)

v4
f +

(

Kv2
th

v3
+ D(turb)

)

∂f

∂v

]

, (2)

where K = 4πe4nthΛ/m2
e is a constant, and Λ is the Coulomb logarithm. The density of

non-thermal electrons nnt ≪ nth, the number density of thermal electrons with which the non-
thermal electrons collide. It is only this larger density which appears in the collision operator
through the constant K. The thermal velocity of the target electrons, v2

th = kbT/me, is also
part of the collision operator.

a. Show that when there is no turbulent contribution, i.e. D(turb) = 0, a Maxwellian with
vnt = vth is a steady solution. Be aware that this is a Maxwellian version of f(v), not f(v)
— the difference is explained on slide 29 of lecture 17.

b. Now include an arbitrary turbulent diffusion D(turb)(v) 6= 0 and find an expression for the
change of non-thermal energy density ∂εnt/∂t. Integrate by parts to obtain an expression
involving only moments of f and possibly surface terms. When doing so assume that

f(v) → C v2 , v → 0 , (3)

for some constant C, and that f(v) vanishes more rapidly than any inverse power of v
as v → ∞. Assume also that v2D(turb) → 0 as v → 0. Surface terms in your final
expression will include C. The full expression should contain contributions from collisions,
proportional to K, and from turbulence. The latter term should vanish if D(turb)(v) ∝ v−1.

c. Take f(v) to be a Maxwellian with thermal speed vnt, and show that the collisional con-
tribution to the energy change, found in part b., is proportional to v2

th − v2
nt. If you begin

with vnt > vth will collisions increase or decrease the non-thermal energy εnt?. Explain in
words how elastic collisions can result in any change to energy εnt.

d. Now take the turbulent diffusion to be of the form which will not change the energy of
the non-thermal particles (so the turbulence itself will neither gain nor lose energy to the
particles)

D(turb) =
G

v
, (4)

where G is a constant. (We showed in lecture 19 that this constant is related to the energy
density of the turbulence as G = (2πe/me)

2εturb/k̄, where k̄ is a wavenumber characteristic
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of the turbulent spectrum.) Show that the Fokker-Planck equation is exactly solved by a
steady state distribution of the form

f(v) = C v2
(

1 + βv2
)

−(δ+1)
, (5)

where C, β and δ are all constants. This combines a Maxwellian-like core (i.e. βv2 < 1)
and power-law tail into a single seamless function The exponent is named δ so that the
non-thermal energy flux F (E) ∼ f(v) → E−δ matching the traditional usage. Write down
the values of the constants δ and β, which make expression (5) a steady solution, explicitly
in terms of K, G and vth.

e. For the solution found in part d. show that it assumes the form of a Maxwellian in the
limit G → 0. Show only that the functional form is correct in that limit, disregarding the
normalization constant C. But show also that the Maxwellian obtained in this limit has a
width vth.

f. For the solution found in part d. perform integrals in eq. (1) to obtain expressions for
C, in terms of nnt, vth and δ. Then find the non-thermal velocity vnt. Show that vnt

approaches the expected limit when δ → ∞. Which values of δ yield a finite value of vnt?
The integrals may be performed using

Ip =

∞
∫

0

v2p (1 + βv2)−(δ+1) dv =
Γ
(

δ − p + 1
2

)

Γ
(

p + 1
2

)

2β
(p+1/2)

Γ(δ + 1)
, (6)

where Γ(x) is the Γ function defined so that Γ(x + 1) = xΓ(x).

g. Since eq. (5) is a steady equilibrium, the effects of turbulence and collision must cancel at
each point in the distribution. The change due to turbulence alone

(

∂f

∂t

)

turb
=

∂

∂v

(

G

v

∂f

∂v

)

, (7)

will either add or subtract particles at a given velocity — collisions will do the opposite.
When the distribution has achieved its steady state, over what range of velocities does the
turbulence add particles? (Naturally it will remove the same number from outside this
region, since wave-particle interactions will neither create nor destroy particles.)
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SOLUTION:

a. A Maxwellian may be written, up to a pre-factor,

f(v) = v2 exp

(

− v2

2v2
th

)

, (8)

where we have used the same thermal velocity as the thermal electron distribution. Taking its
derivative gives

∂f

∂v
=

(

2v − v3

v2
th

)

exp

(

− v2

2v2
th

)

=
1

v v2
th

(

2v2
th − v2

)

f(v) . (9)

The factor appearing second inside the square brackets of in eq. (2) is therefore

Kv2
th

v3

∂f

∂v
= − K(v2 − 2v2

th)

v4
f(v) . (10)

This clearly cancels the first term in brackets, demonstrating that the Maxwellian, eq. (8) is a
steady-state solution.

b. Taking the time derivative of expression (1) yields

∂εnt

∂t
= 1

2me

∞
∫

0

v2 ∂f

∂t
dv = 1

2me

∞
∫

0

v2 ∂

∂v

[

K(v2 − 2v2
th)

v4
f +

(

Kv2
th

v3
+ D(turb)

)

∂f

∂v

]

dv

= −me

∞
∫

0

K(v2 − 2v2
th)

f

v3
dv − me

∞
∫

0

(

Kv2
th

v2
+ v D(turb)

)

∂f

∂v
dv , (11)

after integration by parts. The boundary term in this integration vanishes

bndry term = 1
2me

[

K(v2 − 2v2
th)

v2
f +

(

Kv2
th

v
+ v D(turb)

)

∂f

∂v

]∣

∣

∣

∣

∣

∞

v=0

,

= me K C v2
th − me K C v2

th = 0 , (12)

after using asymptotic form given in eq. (3), discarding the upper limit (v → ∞), and the
turbulent piece. The second term may be integrated by parts once more to yield

∂εnt

∂t
= −me

∞
∫

0

K(v2 − 2v2
th)

f

v3
dv − me

(

Kv2
th

v2
+ v D(turb) f

)
∣

∣

∣

∣

∣

∞

v=0

+ me

∞
∫

0

[

−2
Kv2

th

v3
+

∂(v D(turb))

∂v

]

f dv

= me K



C v2
th −

∞
∫

0

f

v
dv



 + me

∞
∫

0

∂
[

v D(turb)
]

∂v
f dv , (13)
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where the boundary term yields the factor ∝ C via eq. (3). This clearly contains two contri-
butions. The first involves collisional terms, and the second the turbulent piece. It is also clear
that if D(turb)(v) ∝ v−1 the second contribution will vanish.

So the solution is

∂εnt

∂t
= me K



C v2
th −

∞
∫

0

f

v
dv



 + me

∞
∫

0

∂
[

v D(turb)
]

∂v
f dv . (14)

c. The Maxwellian form for f(v)

f(v) =

√

2

π

nnt

v3
nt

v2 exp

(

− v2

2v2
nt

)

, (15)

satisfies both integrals from (1). It clearly has

C =

√

2

π

nnt

v3
nt

. (16)

The integral we need to perform is
∞
∫

0

f

v
dv =

√

2

π

nnt

v3
nt

∞
∫

0

v exp

(

− v2

2v2
nt

)

dv =

√

2

π

nnt

vnt
(17)

Placing this into eq. (14) yields the change rate

∂εnt

∂t
= me K



C v2
th −

∞
∫

0

f

v
dv



 =

√

2

π

meKnnt

v3
nt

[

v2
th − v2

nt

]

, (18)

which takes the form predicted. If vth < vnt, then the non-thermal energy will decrease; it will
decrease vnt until it matches vth.

d. Proposing the form

f(v) = v2
(

1 + βv2
)

−(δ+1)
. (19)

and taking its derivative gives

∂f

∂v
=

[

2v − 2(δ + 1)βv3

1 + βv2

]

(

1 + βv2
)

−(δ+1)
=

2

v

(

1 − δβv2

1 + βv2

)

f(v) . (20)

The factor appearing second inside the square brackets of in eq. (2) is therefore
(

Kv2
th

v3
+

G

v

)

∂f

∂v
=

2K

v4

(

v2
th +

G

K
v2
)

(

1 − δβv2

1 + βv2

)

f(v) (21)

Finally, the entire factor in square brackets becomes

S =

[

K(v2 − 2v2
th)

v4
f +

(

Kv2
th

v3
+

G

v

)

∂f

∂v

]

=
K

v4(1 + βv2)

[

(v2 − 2v2
th)(1 + βv2) + 2

(

v2
th +

G

K
v2
)

(1 − δβv2)

]

f(v)

=
CK

v2(1 + βv2)δ+2

[

(v2 − 2v2
th)(1 + βv2) + 2

(

v2
th +

G

K
v2
)

(1 − δβv2)

]

, (22)
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after introducing eq. (5) for f(v). To be a steady solution it is necessary that ∂S/∂v = 0, so S
must be a constant. The term in square brackets of eq. (22) is a quadratic polynomial in v2. In
order for S to be a constant other than zero, the denominator would also need to be quadratic
in v2 — the same one. This in turn requires δ = −1 so f(v) = Cv2 — this is preposterous.
It is therefore evident that S must not just be constant, but it must be zero. This amounts to
requiring the quadratic in square brackets of (22) to vanish; it must vanish term by term. The
leading order term, proportional to (v2)2 = v4,

(

β − 2
G

K
δβ

)

v4 , (23)

will vanish only if

δ =
K

2G
. (24)

The term linear in v2 is
(

1 − 2v2
thβ + 2

G

K
− 2δβv2

th

)

v2 =

[

1 +
1

δ
− 2v2

thβ(1 + δ)

]

, (25)

will vanish provided

β =
1

2δv2
th

=
G

K v2
th

. (26)

Finally, the constant term vanishes for any choice of δ and β. The steady-state solution therefore
requires δ and β set according to (24) and (26).

e. In the limit G → 0, expression (24) shows that δ → ∞. The steady distribution takes the
form

f(v) = C v2

(

1 +
v2

2δ v2
th

)

−(δ+1)

, (27)

after using (26) to substitute for β. We use the fact

lim
δ→∞

(

1 +
v2

2δ v2
th

)

−(δ+1)

= exp

(

− v2

2 v2
th

)

, (28)

to see that f(v) approaches a Maxellian in that limit. This fact can be establised taking the
logarithm

ln



 lim
δ→∞

(

1 +
v2

2δ v2
th

)

−(δ+1)


 = − lim
δ→∞

[

(δ + 1) ln

(

1 +
v2

2δ v2
th

)]

= − lim
δ→∞

[

(δ + 1)
v2

2δ v2
th

]

= − v2

2 v2
th

. (29)

Thus the distribution does approach a Maxwellian in the limit of vanishing turbulence.
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f. The zeroth moment of expression (5) is

nnt = C

∞
∫

0

v2(1 + βv2)−(δ+1) dv = C I1 =
C Γ

(

δ − 1
2

)

Γ
(

3
2

)

,

2β3/2Γ(δ + 1)

=
C Γ

(

1
2

)

Γ
(

δ − 1
2

)

4β3/2Γ(δ + 1)
=

C
√

π Γ
(

δ − 1
2

)

4β3/2Γ(δ + 1)
, (30)

after using the value Γ(1/2) =
√

π. This yields the expression

C =
4nnt β3/2

√
π

Γ(δ + 1)

Γ
(

δ − 1
2

) =

√

2

π

nnt

v3
th

Γ(δ + 1)

δ3/2 Γ
(

δ − 1
2

) . (31)

The second moment is

εnt = 1
2me

∞
∫

0

v2f(v) dv =
meC

2

∞
∫

0

v4(1 + βv2)−(δ+1) dv =
meC

2
I2

=
meC Γ

(

δ − 3
2

)

Γ
(

5
2

)

4β5/2Γ(δ + 1)
=

3me
√

π C Γ
(

δ − 3
2

)

16β5/2Γ(δ + 1)
. (32)

Substituting the first relationin eq. (31) yields

εnt =
3me nnt

4β

Γ
(

δ − 3
2

)

Γ
(

δ − 1
2

) = 3
2 me nntv

2
th

(

1 − 3

2δ

)

−1

. (33)

Equating this to (3/2)menntv
2
nt yields the relation

vnt =
vth

√

1 − 3/2δ
. (34)

In the limit δ → ∞, which occurs in the absence of turbulence (i.e. G → 0) we find vnt → vth,
consistent with the results of part a.

The pre-factor given in eq. (31) also approaches the value appropriate for a Maxwellian in
the limit δ → ∞. Showing this requires Stirling’s approximation

ln Γ(x) → x ln(x) − x − 1
2 ln

(

2π

x

)

, x → ∞ . (35)

This yields

ln[Γ(x + ǫ)] ≃ (x + ǫ) ln(x + ǫ) − x − ǫ − 1
2 ln

(

2π

x + ǫ

)

,

≃ (x + ǫ)

[

ln(x) + ln

(

1 +
ǫ

x

)

]

− x − ǫ − 1
2 ln

(

2π

x

)

+ 1
2 ln

(

1 +
ǫ

x

)

,

≃ (x + ǫ)

[

ln(x) +
ǫ

x

]

− x − ǫ − 1
2 ln

(

2π

x

)

+
ǫ

2x
,

≃ ln[Γ(x)] + ǫ ln(x) + O
(

ǫ

x

)

. (36)
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This means that for large arguments1

Γ(x + ǫ) ≃ xǫ Γ(x) , (37)

and thus that
Γ(δ + 1)

Γ
(

δ − 1
2

) ≃ δ Γ(δ)

δ−1/2Γ(δ)
≃ δ3/2 . (38)

Using this in eq. (31) yields

C ≃
√

2

π

nnt

v3
th

, (39)

which matches (16), the coefficient for a Maxwellian.
As a final check on our solution we calculate ∂εnt/∂t, which involves the integral

∞
∫

0

f(v)

v
dv = C I1/2 = C

Γ(δ) Γ(1)

2β Γ(δ + 1)
=

C

2βδ
= C v2

th , (40)

after using (26). Using this in expression (14) shows that the non-thermal energy does not
change when the distribution takes the assumed form.

g. Returning to the derivative in eq. (20) we find

G

v

∂f

∂v
= 2CG

(1 + βv2) − (δ + 1)βv2

(1 + βv2)(δ+2)
= 2CG

1 − δβv2

(1 + βv2)(δ+2)
. (41)

The derivative of this expression yields

(

∂f

∂t

)

turb
=

∂

∂v

(

G

v

∂f

∂v

)

= − 4CGv
δβ(1 + βv2) + (δ + 2)β(1 − δβv2)

(1 + βv2)(δ+3)

= −4CGv
2β(δ + 1) − δβ2(δ + 1)v2

(1 + βv2)(δ+3)

= 4CGvβ(δ + 1)
δβv2 − 2

(1 + βv2)(δ+3)
= 2CGvβ(δ + 1)

(v/vth)2 − 4

(1 + βv2)(δ+3)
, (42)

after using eq. (26) to replace δβ = 1/2v2
th. From the final expression it is clear that turbulence

adds particles over the range v > 2vth, and removes them from v < 2vth. This does not depend
on the strength of the turbulence G.

Extra:

The foregoing has used asymptotic, high-energy (v ≫ vth) forms for diffusion terms. These
are singular at v → 0, while the real diffusion coefficients are not. The genuine low-energy
(v ≪ vth) behavior is thereby replaced by behavior singular at v = 0. This singular behavior
can be characterized by extending the distribution f(v) into regions of negative v but taking
f(v) = 0 there. Expression (41) approaches the finite value 2CG from above (v → 0+), while

1This relation is exactly true for ǫ = 0 (obviously) and ǫ = 1 by a well-known property of Γ(x). For the case
ǫ = 2, the same well-known property yields Γ(x + 2) = (x + 1)xΓ(x), which only approximately matches x

2Γ(x),
provided x ≫ 1.
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it is zero when approached from below (v → 0−). This discontinuity produces a Dirac delta
function in the derivative in eq. (42)

(

∂f

∂t

)

turb
=

∂

∂v

(

G

v

∂f

∂v

)

= 2CG

[

vβ(δ + 1)
(v/vth)2 − 4

(1 + βv2)(δ+3)
+ δ(v)

]

. (43)

The singular term adds particles at v = 0 which the real turbulent diffusion would add over
a range of low energies. Only when this new term is included does the change integrate to
zero. The term from eq. (42), plotted in red along the top panel of fig. 1, clearly has a negative
integral. This would, by itself, indicate that turbulence removes more particles than it adds. The
negative integral is, however, offset by the positive contribution from the Dirac delta function,
making the net contribution zero after all: turbulence neither creates nor destroys particles.

Figure 1: Plots of the steady distributions and their changes for the case δ = 4. The bottom
panel shows the Maxwellian (blue) and the function from (5), as a red curve. The red dashed
curve shows the pure power law which f(v) asymptotically approaches. The top panel shows
(∂f/∂t)turb from eq. (42) in red, and v2/v2

th times this in green.

When the change (∂f/∂t)turb is multiplied by v2 (green curve in fig. 1) the contribution
from δ(v) vanishes. The integral of this curve, proportional to the net energy change due to
turbulence, vanishes all by itself. Thus the turbulent diffusion changes neither the number of
particles nor the total energy density. It is evident that both curves cross zero at v = 2vth. The
turbulence removes energy from v < 2vth and adds it to v > 2vth. In doing so, however, it does
not change the net energy of the particles.

Collisions do exactly the opposite of all these things. They remove particles from v ≃ 0 and
v > 2vth, and add them to 0 < v < 2vth. They remove energy from v > 2vth and add it to
v < 2vth.
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