
Hale COLLAGE problem set 3 (Due Fri. Mar. 24)

Flare models include some version of the radiative loss function Λ(T ). A monomial approx-
imation

Λ(T ) ≃ Λ0 Tα
6 , Λ0 = 1.2 × 10−22 erg cm3 s−1 , (1)

permits an analytic treatment. Here T6 is the temperature expressed in units of Megakelvins,
and α is some power-law index. Lecture 9 uses this form with α = −1/2, which we argue to be a
reasonable approximation to the actual function. Zero-dimensional models must use a version of
this function, but it represents the average loss as a function of the average temperature. Once
again a monomial approximation permits analytic treatment, but it is not clear that α = −1/2
is still appropriate: the average of a function is not the same as the function of the average. We
therefore re-derive some of our initial results, but using a general choice of α.

a. Using the form (1) for the radiative loss function, find an expression for the radiative
cooling time, τrad. Express this in terms of T6 and n10, the electron density in units of
1010 cm−3.

b. Use these results of part a. to find the relation between T6 and n10 for which the radiative
and conductive times are equal: τrad = τcond. Write n10 explicitly in terms of T6 and L9,
the full length of the loop in units of 109 cm. This relations also approximates the condition
for mechanical equilibrium. For which α are T and ne correlated with one another, rather
than anti-correlated?

c. Under the assumption of Antiochos & Sturrock (1978), evaporation decreases T and in-
creases ne, keeping constant their product neT , until τrad = τcond, at which point evapo-
ration ends. The constant along which evaporation evolves is set by the total energy (per
unit area) released in the flare, E (erg cm−2)

ne T =
E

3Lkb
. (2)

Use this to find the peak density, n∗, achieved at the end of evaporation, along with the
corresponding temperature, T∗. Write down expressions for n10,∗ and T6,∗, involving only
E9, L9 and α.

d. Next assume that the radiative cooling process occurs in quasi-static equilibrium, so τrad =
τcond, as found in part b. Klimchuk et al (2008) set the enthalpy equal to the difference
between the conductive flux and the radiative loss form the transition region. They further
set that loss to be 4 times the coronal radiative loss yields an energy equation1

3

2

dp

dt
= − 5n2

e Λ(T ) , (3)

where p = 2nekbT . Solve this to obtain an expression for T6(t), resembling slide 29 of
lecture 9, but involving an arbitrary index α rather than the choice α = −1/2. The
solution should take the form

T (t) = T∗

(

1 + ω t
)

−µ
, (4)

1The result of the assumptions is that conductive and enthalpy fluxes move energy around without changing

it. All changes come from radiative losses which amount to 4 + 1 = 5 times the coronal loss alone.
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ion λ G
(0)
λ Tλ σλ

Å 10−25 erg cm3 s−1 sr−1 MK –

Fexxi 128.7 1.64 11.51 0.30
Fexviii 93.9 1.43 6.91 0.44
Fexiv 211.3 6.13 1.99 0.25
Fe ix 171.1 37.84 0.82 0.42

Table 1: Parameters defining the function Gλ(T ) for spectral lines in 4 different ions.

for constants of µ and ω you can write as explicit functions of E9, L9 and α. Here we have
taken t = 0 to be the beginning of radiative cooling — the time of peak density. Are there
any values of α for which the solution vanishes in finite time?

e. Contribution functions from most optically thin spectral lines appear parabolic on log-log
plots (see slides from lecture 11). They may therefore be approximated analytically as

Gλ(T ) = G
(0)
λ exp

[

−
ln2(T/Tλ)

σ2
λ

]

, (5)

where the constants G
(0)
λ , Tλ and σλ are constants for that particular spectral line. Values

for 4 different spectral lines are given in table 1. Adopting this parameterization, show that
during the radiative cooling phase the emissivity of a line, ελ(t), will peak at a temperature

Tλ,pk = β Tλ , (6)

for a factor β dependent only on α and σλ. Is β greater than or less than unity? Why?
[The easiest approach to this result is to express ln(ελ) as a polynomial in ln(T ), and find
the maximum of that.]

f. As the loop cools it passes through peak emission at some time tλ. The lifetime of its
emission in this spectral line, ∆τλ, can be analytically defined though the relation

1

ελ

d2ελ

dt2

∣

∣

∣

∣

∣

tλ

= −
2

∆τ2
λ

. (7)

Use the results above to show that

∆τλ =
σλ

ωµ

(

Tλ,pk

T∗

)

−ν

, (8)

for some index ν, depending on α, and ω and µ defined through eq. (4).

g. Now consider a particular flare with L = 5 × 109 cm and E = 2 × 1012 erg cm−2 (the same
values used to produce slide 34 of lecture 9). Return to the conventional choice of radiative
loss function by setting α = −1/2 (consistent with EBTEL). Consider each of the spectral
lines in table 1 for which the loop cools through the peak during its radiative phase. For
each of them find the time and duration of its peak emission, tλ and ∆τλ.
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SOLUTIONS:

a. The radiative cooling time is

τrad =
3
2p

n2
eΛ(T )

=
3ne kbT

n2
eΛ(T )

=
3 × 1.38n10 T6

Λ0 1020 n2
10T

α
6

= (345 s)T 1−α
6 n−1

10 . (9)

b. The conductive cooling time is still the same as in the lecture notes,

τcond =
3ne kbT

8κ0T 7/2/7L2
=

3 × 1.38n10 T6

1.14 × 10−3 T
7/2
6 /L2

9

= (3622 s)T
−5/2
6 n10 L2

9 . (10)

Equating these yields the relation

τrad

τcond
=

345

3622
T

7/2−α
6 n−2

10 L−2
9 = 1 , (11)

or

n10 = 0.31T
(7−2α)/4
6 L−1

9 . (12)

Temperature and density are correlated only for α < 7/2. Otherwise they are anti-correlated.
Such anti-correlation is a signature of a radiative instability.

c. The evaporation must occur along the curve

n10 T6 = 10−16 E

3kb L
= 0.24 E9 L−1

9 . (13)

Evaporation continues until τrad = τcond, which occurs when eq. (12) is satisfied. Introducing
that yields

T
(11−2α)/4
6 = 0.77 E9 =⇒ T6,∗ = (0.77 E9)

4/(11−2α) . (14)

Using this in eq. (12) yields the peak density

n10,∗ = 0.31L−1
9 (0.77 E10)

(7−2α)/(11−2α) . (15)

As a check on these results we set α = −1/2 to obtain

T6,∗ = (0.77 E9)
1/3 = 0.93 E

1/3
9 , n10,∗ = 0.27L−1

9 E
2/3
9 .

These expression agree with those on slide 32 of lecture 9, after using the fact that E = EL/V .

d. Dividing the energy equation, eq. (3), by p yields

3

2

1

p

dp

dt
= − 5

n2
e

p
Λ(T ) = −

3

2

5

τrad
= −

3

2

5

τcond
, (16)
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after introducing the cooling times which are equal. (Trick-of-the-trade: it is frequently easier
to formulate ODEs in terms of logarithmic derivatives, as I am doing here. This cuts down on
the number of constants needed.) If we now substitute p = 2nekbT we obtain

1

p

dp

dt
=

1

T

dT

dt
+

1

ne

dne

dt
= −

5

τcond
= − (1.4 × 10−3 s−1)T

5/2
6 n−1

10 L−2
9 . (17)

We now use eq. (12) to re-write the logarithmic derivative of density

1

ne

dne

dt
=

1

n10

dn10

dt
=

d ln(n10)

dt
=

7 − 2α

4

d ln(T6)

dt
=

7 − 2α

4

1

T

dT

dt
. (18)

Placing this into eq. (17) yields a simple equation for T6 alone

1

p

dp

dt
=

(

1 +
7 − 2α

4

)

1

T

dT

dt
=

(

11 − 2α

4

)

1

T6

dT6

dt

= −(1.4 × 10−3 s−1)T
5/2
6

[

0.31T
(7−2α)/4
6 L−1

9

]

−1

L−2
9

= −
(1.4 × 10−3 s−1)

0.31
T

5/2−(7−2α)/4
6 L−1

9 = −(4.5 × 10−3 s−1)T
(3+2α)/4
6 L−1

9 . (19)

This provides us with a simple ODE for T6,

dT6

dt
= − (4.5 × 10−3 s−1)

4

11 − 2α
L−1

9 T
1+(3+2α)/4
6 . (20)

Dividing both sides by T
1+(3+2α)/4
6 yields an equation

T
−1−(3+2α)/4
6

dT6

dt
= −

4

3 + 2α

d

dt

[

T
−(3+2α)/4
6

]

= − (4.5 × 10−3 s−1)
4

11 − 2α
L−1

9 ,

which can be re-cast in the form

d

dt

[

T
−(3+2α)/4
6

]

=
3 + 2α

11 − 2α
(4.5 × 10−3 s−1)

1

L9
, (21)

— very easy to solve. Dividing both sides by T
−(3+2α)/4
6,∗ yields an equation

d

dt

(

T6

T6,∗

)

−(3+2α)/4

= (4.5 × 10−3 s−1)
3 + 2α

11 − 2α

T
(3+2α)/4
6,∗

L9
= ω , (22)

where we have defined the right hand side to be ω, in anticipation of the form in (4). Using eq.
(14) yields an explicit version

ω =

(

1

224 s

)

3 + 2α

11 − 2α

(0.77E9)
(3+2α)/(11−2α)

L9
, (23)

depending only on E9 and L9, as well as on α.
Defining t = 0 to be the time at which radiative cooling begins, and thus T6 = T6,∗, we have

the solution
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T (t) = T∗

(

1 + ω t
)

−µ
, µ =

4

3 + 2α
. (24)

We can check this using the limit α = −1/2, for which µ = 2 and we find

T (t) = T∗

(

1 + ω t
)

−2
,

in agreement with slide 29 of lecture 9. That slide followed the approach of Cargill et al (1995)
which neglected the enthalpy flux entirely. Doing so yields an inverse time-scale ω smaller than
our treatment of enthalpy flux — smaller by a factor 2/5 in fact.

Since the loop is cooling, expression (24) must be a monotonically decreasing function of
time. In the case

α < −
3

2
, (25)

we find the exponent µ < 0. Expression (23) reveals that for this same case, ω < 0. Thus the
temperature drops to zero at t = 1/|ω|.

e. The emissivity of spectral line λ is

ελ = 4π n2
e Gλ(T ) = 4π n2

e G
(0)
λ exp

[

−
ln2(T/Tλ)

σ2

]

. (26)

Taking its natural log and using eq. (12) to eliminate ne yields

ln
(

ελ

)

=
7 − 2α

2
ln(T ) −

1

σ2

[

ln(T ) − ln(Tλ)
]2

+ const. = f(T ) , (27)

where the constants are not important for obtaining a maximum. Taking the derivative of this
expression w.r.t. T , and setting it to zero, yields the equation

T f ′(T ) =
7 − 2α

2
−

2

σ2

[

ln(T ) − ln(Tλ)
]

= 0 . (28)

The temperature at peak emissivity is

Tλ,pk = Tλ exp
[

1
4 σ2(7 − 2α)

]

= β Tλ , (29)

Provided temperature and density both decrease during radiative cooling (i.e. α < 7/2) the coef-
ficient β > 1, and the emissivity will peak at a temperature slightly higher than the contribution
function does. This occurs as the density is dropping just fast enough to offset the increase in
contribution function as T decreases toward Tλ.

f. The time-dependent emissivity can be written

ελ = exp
{

f [T (t) ]
}

, (30)

where f(T ) is defined in eq. (27). Taking its first derivative yields

dελ

dt
=

dT

dt
f ′(T ) exp

{

f [T (t) ]
}

=
dT

dt
f ′(T ) ελ , (31)
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after two applications of the chain rule. Naturally this vanishes at T = Tλ,pk, since that is where
f ′(T ) = 0. The only non-vanishing contribution to the second derivative will come from the
term with f ′′(T ), since every other terms will involve at least one factor of f ′(T ), which will
vanish. The result is

d2ελ

dt2

∣

∣

∣

∣

∣

Tλ,pk

=

(

dT

dt

)2

f ′′(Tλ,pk) ελ . (32)

Two derivatives of (27) yields

f ′′(Tλ,pk) = −
2

T 2
λ,pk σ2

. (33)

Next we take the time derivative of eq. (24) to obtain

dT

dt
= − µ ω T∗ (1 + ω t)−µ−1 = − µ ω T∗

(

T

T∗

)(µ+1)/µ

. (34)

Combing these pieces yields

1

ελ

d2ελ

dt2

∣

∣

∣

∣

∣

Tλ,pk

= −
2µ2ω2

σ2

(

Tλ,pk

T∗

)2/µ

. (35)

equating with with 2/∆τ2
λ yields the emission lifetime

∆τλ =
σ

ωµ

(

Tλ,pk

T∗

)

−1/µ

, (36)

This matches eq. (8) for an index

ν =
1

µ
=

3 + 2α

4
. (37)
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g. The given values correspond to L9 = 5 and E9 = 2000. Using the latter in eq. (14) yields

T6,∗ = (0.77 · 2000)1/3 = 11.5 . (38)

From eq. (29) we find

β = e2σ2

, (39)

which yields a different value, greater than one, for each spectral line according to its value of
σ. These are listed in table 2. Multiplying these by the different values of Tλ and then dividing
by T∗ = 11.5 MK yields the ratio Tλ,pk/T∗ also listed in the table. The first ratio, for Fe xxi, is
greater than one, meaning the 128.7Å line will not peak during the radiative phase. According
to the wording of the problem, we need not compute a time for this line. (If we tried we would
find a negative cooling time — strange!).

For the remaining three spectral lines, the peak time is found by setting T = Tλ,pk in eq.
(24) and solving for time. The result is

tλ =
1

ω

[

(

Tλ,pk

T∗

)

−1/2

− 1

]

. (40)

Equation (23) yields

1

ω
= (224 s) ·

12

2
·

5

(0.77 · 2000)1/6
= 1.9 × 103 s . (41)

This is the characteristic cooling time for this flare loop. It is reassuringly comparable to cooling
times we often encounter: some fraction of an hour (here it is 31 min. 40 s).

Combining this values with eq. (40) yields the delays given in table 2. The lifetime is given
by

∆τλ =
σ

ωµ

(

Tλ,pk

T∗

)

−2/µ

= (1.0 × 103 s)σ

(

Tλ,pk

T∗

)

−1

. (42)

ion λ β Tλ,pk/T∗ tλ ∆τλ

Å s s

Fexxi 128.7 1.20 1.20 – –
Fexviii 93.9 1.47 0.88 134 463
Fexiv 211.3 1.13 0.20 2,500 560
Fe ix 171.1 1.42 0.10 4,200 1,300

Table 2: Derived parameters for 4 different ions.
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