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HW Set 2 Problem 1

In this problem, we will modify (simplify) the configuration in Problem Set 1, with

the magnetic field generated by a bipole of strength λ at the position in the yz plane

(±b, 0), λ, b both being positive, and a line current I at the position (0, h) and its mirror

current −I at (0,−h). This produces a simple 2-dimensional flux rope with an X-point

below the flux rope (the center of which is the line current) with an appropriate sign

of the current I. With this toy model, we will predict observational measurements,

reconnection rate and coronal dimming, as the flux rope rises.

(a) [5 points] As the flux rope rises, we assume that the current I in the flux rope is

constant, and reconnection at the X-point below the rope is always very efficient so

that a current sheet never forms there. With such a configuration, find the reconnec-

tion flux as a function of the flux rope height h. For a high-lying rope h >> b, and also

given λ = 2I/c, find the leading term of your solution.

This problem is a simplified version of Problem Set 1, where the quadrupole is replaced by a bipole;

therefore, the flux function of the potential field by the bipole is given by:

Ap = λ

[
atan

(
y + b

z

)
− atan

(
y − b
z

)]
. (1)

The flux function by the line current I at (0, h) and its image current −I at (0,−h) is given by

AI =
I

c
ln

[
(z + h)2 + y2

(z − h)2 + y2)

]
. (2)

And the total flux function is A = Ap +AI .

If I flows in the x-direction, an X-point is present below the flux rope where the magnetic field

becomes zero. We can find this point by

By =
∂A

∂z y=0
= − 2λb

z2 + b2
− 2I

c

2h

z2 − h2
= 0. (3)

Now given that λ = 2I/c, we can solve the quadratic equation to get the height of the X-point to

be

zx = ±
√
bh(h− b)
h+ b

. (4)

For the solution above the photosphere in the corona, we take only the positive root. One can see

that at the limit h >> b, the above solution becomes zx ≈
√
bh.

The flux function at this point is given by

ψ(h) = A(0, zx(h)) = 2λatan

(
b

zx

)
+
I

c
ln

[
(zx + h)2

(zx − h)2

]
= λ

[
2atan

(
b

zx

)
+ ln

(
h+ zx
h− zx

)]
, (5)
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with zx(h) given in Eq. 4. At the limit h >> b, it can be found that the leading term is

ψ(h) = 4λ

√
b

h
. (6)

As the flux rope rises, the X-point is rising, and the total flux below the X-point increases due to

reconnection. Since the flux function on the photosphere surface does not change, the difference

between the flux ψ(h) and the flux at the initial height ψ(h(0)) is the total reconnectionn flux

ψR(h) = ψ(h(0))− ψ(h). In the limit h >> b, the reconnection flux is approximated by

ψR(h) = 4λ

(√
b

h(0)
−
√
b

h

)
. (7)

Note that the reconnection flux is the difference between the flux at a given time and the flux at

the initial time. The above format gives the absolute value of the reconnection flux.

(b) [3 points] The measured CME velocity near the Sun often exhibits a time evolution

that may be described by a hyperbolic function

v =
v0
2

[
tanh

(
t− 2τ

τ

)
+ 1

]
,

where t is time, τ is a time constant, and v0 is the peak velocity the CME attains.

Use the following set of parameters, v0τ = b and h(t = 2τ) = 5b, for two different values

of the time constant τ = 50, 150 sec, respectively, plot the reconnection flux ψR versus

time together with the velocity, with the time range from 0 to 1000 sec.

We can find the height of the flux rope by a time integral of v(t), which yields

h =

∫ t

0
vdt =

b

2

[
t

τ
+ ln

(
cosh

(
t− 2τ

τ

))]
+ 4b. (8)

Taking this expression back to Eq. 7, we can plot reconnection flux ψR(h(t)) as seen in the

top panels of the figures, together with the velocity time profile. It is seen that the rise of the

reconnection flux is delayed relative to the flux rope velocity.

Now recall the Problem Set 1, the reconnection flux here is really a two-dimensional measurement

with the translational lengthscale Lx not specified. If we use the same values of λ and Lx as in

Problem Set 1, the reconnection flux in this problem is of order 1021 Mx (G cm), well within the

range of reconnection flux measured in flare observations, which is of order 1020−22 Mx.

(c) [3 points] Find and plot the reconnection rate ψ̇R = dψR/dt and rope’s acceleration.

Evaluate the time difference between the peak acceleration and peak reconnection rate

for the two values of the time constant τ .

From the hyperbolic function of the flux rope velocity profile, the flux rope acceleration is simply

a =
dv

dt
=
v0
2τ

[
1− tanh2

(
t− 2τ

τ

)]
=

2v

τ

(
1− v

v0

)
, (9)
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which peaks at ta = 2τ or va = v0/2. On the other hand, the reconnection rate is given by

ψ̇R =
dψR
dt

=
dh

dt

dψR
dh

= 2λv

√
b

h3
, (10)

which decreases with the height and increases with the velocity. Therefore, the faster the rope

rises, the earlier the reconnection rate peaks. Now if we compare the two rates, the term (1−v/v0)
decreases faster than the term h−3/2, therefore, the flux rope acceleration peaks ahead of the

reconnection rate, but the time difference becomes smaller as the rope rises faster (smaller τ).

Indeed, with a little bit algebra and abiding by the h >> b assumption, it can be found that the

reconnection rate peaks at the time when the CME velocity satisfies

v0 > vψ =
v0

1 + 3
4
b
h

>
1

2
v0. (11)

It is clear that, in this specific example, reconnection rate is going to peak after the peak acceler-

ation. Working our way further out, we can find the time tψ of peak ψ̇R which satisfies

tanh

(
tψ − 2τ

τ

)
=

2

1 + 3
4
b
h

− 1. (12)

With the b/h value, ∆t = tψ − ta ∼ τ . You can find this from your plots of a and ψ̇R with two

different values of τ , as shown in the middle panels of the figures.

Again, with parameters same as in the problem set 1, the reonnection rate in this problem is of

order 1018 Mx/s, consistent with observationally measured values. We can probe a little bit the

CME kinematics as well by assuming that v0 = 1000km/s, a typical peak velocity of a fast CME.

With the given parameters, the initial height of the flux rope is about 1010 cm, a fraction of the

solar radius. The CME acceleration in this problem is quite large, of order 10 km/s, given the short

time-scale in this problem.

(d) [3 points] As the rope rises, when we look down upon the rising rope, we may

observe coronal dimming. Suppose that the rope is truely 2-dimensional with recon-

nection injecting bubble field lines into the rope, and the axial flux (which is along the

x-direction in this 2d model) is conserved, but is somehow bent and firmly attached

to the surface at two locations. Suppose that coronal mass along this axial direction

is conserved and the total length of the axial flux tube grows proportionally with h,

for a uniform adiabatic expansion, calculate and plot the time evolution of the den-

sity (n), temperature (T ), and total emission measure (EM) along this axial flux tube

compared with their initial values. You may treat the coronal mass as an ideal gas

with the ratio of specific heats γ = 5/3.

From mass conservation, it is easily seen that n(t)l(t) = n(0)l(0), therefore,

n(t)

n(0)
=
l(0)

l(t)
=
h(0)

h(t)
. (13)
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The total emission measure EM = n2l = n(0)l(0)n(t), so there is

EM(t)

EM(0)
=
n(t)

n(0)
=
h(0)

h(t)
. (14)

The temperature can be found from the adiabatic relation

T (t)l(t)γ−1 = T (0)l(0)γ−1, (15)

leading to
T (t)

T (0)
=

[
h(0)

h(t)

]γ−1
. (16)

The time evolution of density, emission measure, and temperature is given in the bottom panels of

the figures for the time constant τ = 50, 150 sec.

(e) [2 points] The coronal temprature before the eruption is 1.5 MK. Suppose that we

observe the feet of the flux rope with the Fe XII line at 193Å, and the temperature

response of the instrument for this line is given by a Gaussian

G(T ) = exp

[
−(T − T0)2

2T 2
w

]
,

where T0 = 2Tw = 1.5MK. The observed counts is an integral along the line of sight with

the effective length scale leff ∼ h. Find and plot the time sequence of the observed

data counts normalized to the pre-eruption data counts (aka, coronal dimming) at this

line. Evaluate the degree of dimming when the flux rope is twice as high as its initial

height.

Here we need to consider the temperature as well as the density change of the plasma. For the

uniform expansion, the differential emission measure is a Dirac-delta function n(T ′)2dl/dT ′ ∝
n(T ′)2δ(T ′ − T ). Therefore, the observed data counts at a given time is given by

I(t) =

∫
n2

dl

dT ′
G(T ′)dT ′ = n(T (t))2l(T (t))G(T (t)), (17)

which is normalized to the pre-eruption emission by

I(t)

I0
=

n(t)2l(t)G(T (t))

n(0)2l(0)G(T (0))
=

n(t)G(T (t))

n(0)G(T (0))
=
h(0)G(T (t))

h(t)G(T (0))
, (18)

where we used the mass conservation relation again. With the given parameters and Eq. 16, it

is seen that G(T (0)) = G(T0) = 1, and G(T (t)) = exp[−2(h̄γ−1 − 1)2] where h̄ ≡ h(0)/h(t) by

definition. Therefore,
I

I0
= h̄exp[−2(h̄γ−1 − 1)2]. (19)

The time evolution is plotted in the bottom panels of the figures. When the rope is twice as

high, h̄ = 0.5, the temperature of plasma is T = h̄γ−1T0 = 0.62T0. At this temperature, G(T ) =

exp[−2(0.62− 1)2] = 0.75. Meanwhile the density or emission measure n2l is reduced by one half.

Therefore, the observed counts is only 0.38 of the pre-eruption emission. Such an extent of dimming

is consistent with many observations.
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Fig. 1.— Eovlution of the magnetic and plasma properties of the flux rope with τ = 50 sec (left)

and τ = 150 sec (right). Top: reconnection flux (in units of λ) and CME velocity (normalized to

v0). Middle: reconnection rate (in units of λ per second) and CME acceleration (normalized to

5v0). Bottom: plamsa number density, Emission Measure (EM), and temperature along the axial

flux tube, and observed counts at the feet. All properties are normalized to their values at the

initial time.


