
Hale COLLAGE problem set 4 (Due Fri. Apr. 14)

We represent the non-thermal component of the electron distribution by the angle-averaged
distribution function f(v) defined so that the number density and energy density of non-thermal
electrons are
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v2f(v) dv = 3
2me nnt v2

nt , (1)

where vnt is a characteristic velocity for the non-thermal electrons. The non-thermal distribution
function evolves according to the Fokker-Planck equation like that on slide 32 of lecture 18. We
will write this as
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where K = 4πe4nthΛ/m2
e is a constant, and Λ is the Coulomb logarithm. The density of

non-thermal electrons nnt ≪ nth, the number density of thermal electrons with which the non-
thermal electrons collide. It is only this larger density which appears in the collision operator
through the constant K. The thermal velocity of the target electrons, v2

th = kbT/me, is also
part of the collision operator.

a. Show that when there is no turbulent contribution, i.e. D(turb) = 0, a Maxwellian with
vnt = vth is a steady solution. Be aware that this is a Maxwellian version of f(v), not f(v)
— the difference is explained on slide 29 of lecture 17.

b. Now include an arbitrary turbulent diffusion D(turb)(v) 6= 0 and find an expression for the
change of non-thermal energy density ∂εnt/∂t. Integrate by parts to obtain an expression
involving only moments of f and possibly surface terms. When doing so assume that

f(v) → C v2 , v → 0 , (3)

for some constant C, and that f(v) vanishes more rapidly than any inverse power of v
as v → ∞. Assume also that v2D(turb) → 0 as v → 0. Surface terms in your final
expression will include C. The full expression should contain contributions from collisions,
proportional to K, and from turbulence. The latter term should vanish if D(turb)(v) ∝ v−1.

c. Take f(v) to be a Maxwellian with thermal speed vnt, and show that the collisional con-
tribution to the energy change, found in part b., is proportional to v2

th − v2
nt. If you begin

with vnt > vth will collisions increase or decrease the non-thermal energy εnt?. Explain in
words how elastic collisions can result in any change to energy εnt.

d. Now take the turbulent diffusion to be of the form which will not change the energy of
the non-thermal particles (so the turbulence itself will neither gain nor lose energy to the
particles)

D(turb) =
G

v
, (4)

where G is a constant. (We showed in lecture 19 that this constant is related to the energy
density of the turbulence as G = (2πe/me)

2εturb/k̄, where k̄ is a wavenumber characteristic
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of the turbulent spectrum.) Show that the Fokker-Planck equation is exactly solved by a
steady state distribution of the form

f(v) = C v2
(

1 + βv2
)

−(δ+1)
, (5)

where C, β and δ are all constants. This combines a Maxwellian-like core (i.e. βv2 < 1)
and power-law tail into a single seamless function The exponent is named δ so that the
non-thermal energy flux F (E) ∼ f(v) → E−δ matching the traditional usage. Write down
the values of the constants δ and β, which make expression (5) a steady solution, explicitly
in terms of K, G and vth.

e. For the solution found in part d. show that it assumes the form of a Maxwellian in the
limit G → 0. Show only that the functional form is correct in that limit, disregarding the
normalization constant C. But show also that the Maxwellian obtained in this limit has a
width vth.

f. For the solution found in part d. perform integrals in eq. (1) to obtain expressions for
C, in terms of nnt, vth and δ. Then find the non-thermal velocity vnt. Show that vnt

approaches the expected limit when δ → ∞. Which values of δ yield a finite value of vnt?
The integrals may be performed using
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where Γ(x) is the Γ function defined so that Γ(x + 1) = xΓ(x).

g. Since eq. (5) is a steady equilibrium, the effects of turbulence and collision must cancel at
each point in the distribution. The change due to turbulence alone
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will either add or subtract particles at a given velocity — collisions will do the opposite.
When the distribution has achieved its steady state, over what range of velocities does the
turbulence add particles? (Naturally it will remove the same number from outside this
region, since wave-particle interactions will neither create nor destroy particles.)
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