Hale COLLAGE problem set 3 (Due Fri. Mar. 24) Flare models include some version of the radiative loss function $\Lambda(T)$. A monomial approximation $$\Lambda(T) \simeq \Lambda_0 T_6^{\alpha}$$, $\Lambda_0 = 1.2 \times 10^{-22} \,\mathrm{erg} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$, (1) permits an analytic treatment. Here T_6 is the temperature expressed in units of Megakelvins, and α is some power-law index. Lecture 9 uses this form with $\alpha = -1/2$, which we argue to be a reasonable approximation to the actual function. Zero-dimensional models must use a version of this function, but it represents the average loss as a function of the average temperature. Once again a monomial approximation permits analytic treatment, but it is not clear that $\alpha = -1/2$ is still appropriate: the average of a function is not the same as the function of the average. We therefore re-derive some of our initial results, but using a general choice of α . - a. Using the form (1) for the radiative loss function, find an expression for the radiative cooling time, $\tau_{\rm rad}$. Express this in terms of T_6 and n_{10} , the electron density in units of $10^{10} \, {\rm cm}^{-3}$. - b. Use these results of part a. to find the relation between T_6 and n_{10} for which the radiative and conductive times are equal: $\tau_{\rm rad} = \tau_{\rm cond}$. Write n_{10} explicitly in terms of T_6 and L_9 , the full length of the loop in units of 10^9 cm. This relations also approximates the condition for mechanical equilibrium. For which α are T and n_e positively correlated with one another, rather than anti-correlated? - c. Under the assumption of Antiochos & Sturrock (1978), evaporation decreases T and increases n_e , keeping constant their product n_eT , until $\tau_{\rm rad} = \tau_{\rm cond}$, at which point evaporation ends. The constant along which evaporation evolves is set by the total energy (per unit area) released in the flare, \mathcal{E} (erg cm⁻²) $$n_e T = \frac{\mathcal{E}}{3L k_b} . {2}$$ Use this to find the peak density, n_* , achieved at the end of evaporation, along with the corresponding temperature, T_* . Write down expressions for $n_{10,*}$ and $T_{6,*}$, involving only \mathcal{E}_9 , L_9 and α . d. Next assume that the radiative cooling process occurs in quasi-static equilibrium, so $\tau_{\rm rad} = \tau_{\rm cond}$, as found in part b. Klimchuk *et al* (2008) set the enthalpy equal to the difference between the conductive flux and the radiative loss form the transition region. They further set that loss to be 4 times the coronal radiative loss to obtain an energy equation¹ $$\frac{3}{2}\frac{dp}{dt} = -5n_e^2\Lambda(T) , \qquad (3)$$ where $p = 2n_e k_b T$. Solve this to find an expression for T(t), resembling slide 29 of lecture 9, but involving an arbitrary index α rather than the choice $\alpha = -1/2$. The solution should take the form $$T(t) = T_* \left(1 + \omega t\right)^{-\mu} , \qquad (4)$$ ¹The result of the assumptions is that conductive and enthalpy fluxes move energy around without changing it. All changes come from radiative losses which amount to 4 + 1 = 5 times the coronal loss alone. | ion | $_{ m \AA}^{\lambda}$ | $\begin{array}{ c c c } G_{\lambda}^{(0)} \\ 10^{-25} \mathrm{erg} \mathrm{cm}^3 \mathrm{s}^{-1} \mathrm{sr}^{-1} \end{array}$ | T_{λ} MK | σ_{λ} – | |----------|-----------------------|--|------------------|----------------------| | Fe xxi | 128.7 | 1.64 | 11.51 | 0.30 | | Fe xviii | 93.9 | 1.43 | 6.91 | 0.44 | | Fe XIV | 211.3 | 6.13 | 1.99 | 0.25 | | Fe IX | 171.1 | 37.84 | 0.82 | 0.42 | Table 1: Parameters defining the function $G_{\lambda}(T)$ for spectral lines in 4 different ions. for constants of μ and ω you can write as explicit functions of \mathcal{E}_9 , L_9 and α . Here we have taken t=0 to be the beginning of radiative cooling — the time of peak density. Are there any values of α for which the solution vanishes in finite time? e. Contribution functions from most optically thin spectral lines appear parabolic on log-log plots (see slides from lecture 11). They may therefore be approximated analytically as $$G_{\lambda}(T) = G_{\lambda}^{(0)} \exp\left[-\frac{\ln^2(T/T_{\lambda})}{\sigma_{\lambda}^2}\right] ,$$ (5) where the constants $G_{\lambda}^{(0)}$, T_{λ} and σ_{λ} are constants for that particular spectral line. Values for 4 different spectral lines are given in table 1. Adopting this parameterization, show that during the radiative cooling phase the emissivity of a line, $\varepsilon_{\lambda}(t)$, will peak at a temperature $$T_{\lambda,\mathrm{pk}} = \beta T_{\lambda} ,$$ (6) for a factor β dependent only on α and σ_{λ} . Is β greater than or less than unity? Why? [The easiest approach to this result is to express $\ln(\varepsilon_{\lambda})$ as a polynomial in $\ln(T)$, and find the maximum of *that*.] f. As the loop cools it passes through peak emission at some time t_{λ} . The lifetime of its emission in this spectral line, $\Delta \tau_{\lambda}$, can be analytically defined though the relation $$\frac{1}{\varepsilon_{\lambda}} \left. \frac{d^2 \varepsilon_{\lambda}}{dt^2} \right|_{t_{\lambda}} = -\frac{2}{\Delta \tau_{\lambda}^2} . \tag{7}$$ Use the results above to show that $$\Delta \tau_{\lambda} = \frac{\sigma_{\lambda}}{\omega \mu} \left(\frac{T_{\lambda, \text{pk}}}{T_{*}} \right)^{-\nu} , \qquad (8)$$ for some index ν , depending on α , and ω and μ defined through eq. (4). g. Now consider a particular flare with $L=5\times 10^9\,\mathrm{cm}$ and $\mathcal{E}=2\times 10^{12}\,\mathrm{erg\,cm^{-2}}$ (the same values used to produce slide 34 of lecture 9). Return to the conventional choice of radiative loss function by setting $\alpha=-1/2$ (consistent with EBTEL). Consider each of the spectral lines in table 1 for which the loop cools through the peak during its radiative phase. For each of them find the time and duration of its peak emission, t_{λ} and $\Delta \tau_{\lambda}$.