Hale COLLAGE problem set 3 (Due Fri. Mar. 24)

Flare models include some version of the radiative loss function A(7T). A monomial approx-
imation
AT) = A Tg , Ap=12x10"2ergem3s™ | (1)

permits an analytic treatment. Here Tg is the temperature expressed in units of Megakelvins,
and « is some power-law index. Lecture 9 uses this form with o = —1/2, which we argue to be a
reasonable approximation to the actual function. Zero-dimensional models must use a version of
this function, but it represents the average loss as a function of the average temperature. Once
again a monomial approximation permits analytic treatment, but it is not clear that o = —1/2
is still appropriate: the average of a function is not the same as the function of the average. We
therefore re-derive some of our initial results, but using a general choice of .

a. Using the form (1) for the radiative loss function, find an expression for the radiative
cooling time, Ty5q. Express this in terms of T and nig, the electron density in units of
1019 ¢cm 3.

b. Use these results of part a. to find the relation between Ty and nig for which the radiative
and conductive times are equal: Trag = Teond- Write nqg explicitly in terms of Ty and
Lg, the full length of the loop in units of 10° cm. This relations also approximates the
condition for mechanical equilibrium. For which « are T and n. positively correlated with
one another, rather than anti-correlated?

c. Under the assumption of Antiochos & Sturrock (1978), evaporation decreases T and in-
creases N, keeping constant their product n.T’, until 7,4 = Tcond, at which point evapo-
ration ends. The constant along which evaporation evolves is set by the total energy (per
unit area) released in the flare, £ (ergcm™2)
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neT = SLhn (2)

Use this to find the peak density, n,, achieved at the end of evaporation, along with the
corresponding temperature, T,. Write down expressions for nig s and T ., involving only
&y, Lg and a.

d. Next assume that the radiative cooling process occurs in quasi-static equilibrium, so 7y,q =
Teonds as found in part b. Klimchuk et al (2008) set the enthalpy equal to the difference
between the conductive flux and the radiative loss form the transition region. They further
set that loss to be 4 times the coronal radiative loss to obtain an energy equation®
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where p = 2n.kyT. Solve this to find an expression for T'(t), resembling slide 29 of lecture
9, but involving an arbitrary index « rather than the choice @« = —1/2. The solution
should take the form L
T = T(1+wt) ", (4)

IThe result of the assumptions is that conductive and enthalpy fluxes move energy around without changing
it. All changes come from radiative losses which amount to 4 + 1 = 5 times the coronal loss alone.



ion A Gg\o) T)\ (0B
A 107 ergem3 s st MK -

Fexxr | 128.7 1.64 11.51 0.30
Fexvir | 93.9 1.43 6.91 044
Fexiv | 211.3 6.13 1.99 0.25

Fe1x 171.1 37.84 0.82 042

Table 1: Parameters defining the function G»(T") for spectral lines in 4 different ions.

for constants of 1 and w you can write as explicit functions of &, Lg and «. Here we have
taken ¢t = 0 to be the begining of radiative cooling — the time of peak density. Are there
any values of « for which the solution vanishes in finite time?

e. Contribution functions from most optically thin spectral lines appear parabolic on log-log
plots (see slides from lecture 11). They may therefore be approximated analytically as
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where the constants G&O), T and o), are constants for that particular spectral line. Values

for 4 different spectral lines are given in table 1. Adopting this parameterization, show that
during the radiative cooling phase the emissivity of a line, £(t), will peak at a temperature

Tapxk = BT , (6)

for a factor § dependent only on « and o). Is § greater than or less than unity? Why?
[The easiest approach to this result is to express In(e)) as a polynomial in In(7"), and find
the maximum of that.]

f. As the loop cools it passes through peak emission at some time ty. The lifetime of its
emission in this spectral line, A7y, can be analytically defined though the relation
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Use the results above to show that
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for some index v, depending on «, and w and p defined through eq. (4).

g. Now consider a particular flare with L = 5 x 10° cm and £ = 2 x 102 ergcm ™2 (the same
values used to produce slide 34 of lecture 9). Return to the conventional choice of radiative
loss function by setting o = —1/2 (consistent with EBTEL). Consider each of the spectral
lines in table 1 for which the loop cools through the peak during its radiative phase. For
each of them find the time and duration of its peak emission, ¢y and Ary.



