Hale COLLAGE 2017 Lecture 21
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Previous lectures

1) Magnetic reconnection and
energy release

2) Particle acceleration and heating

3) Chromospheric evaporation, loop

\_ heating and cooling -

Following lectures:

How to diagnose the
accelerated particles and
the environment?

e What?
* Where? ==) How?
* When?



Outline

* Radiation from energetic particles
* Bremsstrahlung = Previous lecture
* Gyromagnetic radiation (“magnetobremsstrahlung”)
- This lecture

* Other radiative processes -> Briefly in the next lecture
* Coherent radiation, inverse Compton, nuclear processes

* Suggested reading:

* Synchrotron radiation: Chapter 5 of “Essential Radio Astronomy”
by Condon & Ransom 2016

e Gyroresonance radiation: Chapter 5 of Gary & Keller 2004
* Gyrosynchrotron radiation: Dulk & Marsh 1982

* Next two lectures: Diagnosing flare energetic particles
using radio and hard X-ray imaging spectroscopy




Radiation from an accelerated charge

P ¢ 2q
T _a’sin’0 p="1

Larmor formula: _
dQQ 4dmac 3¢

Relativistic Larmor formula:

aP  ¢* (al +7%a])
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Radio and HXR/gammy-ray emission in flares:
* Acceleration experienced in the Coulomb field: bremsstrahlung
* Acceleration experienced in a magnetic field: gyromagnetic radiation



Gyromagnetic radiation

* Gyromaghnetic radiation
(sometimes called
“gyroemission”) is due to
the acceleration
experienced by an electron
as it gyrates in a B field due
to the Lorentz force.

* Acceleration is
perpendicular to v,




Gyroemission from a single electron

e Let’s start from Larmor’s formula:

dP ? 2q°
-1 a’sin’0 p="1 4
dQ 4nc 3c
* Perpendicular acceleration: a;, = w.,v,;, where w,, is the
(angular) electron gyrofrequency

B
Wee = 2TV, = >~ 21 - 2.8B MHz
mecC
* (Direction integrated) Larmcz)r’s equation becomes:
2e

e Relativistic case:
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Radiation pattern: non-relativistic

* Larmor’s Equation
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Radiation pattern: relativistic

* Relativistic case (y > 1)
* In the rest frame of the electron

dPI qZ

= a’sin?g’
4’ ages ¢

* In the observer’s frame, radiation pattern found from
Lorentz transform from the electron rest frame

Null occurs at 8 = + arccos(1/y) l Observer

Strongly beamed forward along 3
. : -
the direction of the electron! Z




Relativistic gyroemission:
sharply pulsed radiation

At, = t (end of pulse) — t (start of pulse)

Ax x—Ax x Ax % Ax
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Power spectrum P(v)

 For a nonrelativistic electron, radiation field E (t) is
a sinusoid with frequency w,,

* Power spectrum is a single tone at the electron
gyrofrequency
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Power spectrum P (V)

* As the electron speed picks up, mild beaming effect
takes place, E(t) is non-sinusoidal

* Low harmonics of electron gyrofrequency show up
in the power spectrum

£

in the E(t) plot?
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Power spectrum P (V)

* When the electron is H
Qo . i n
relativistic E (t) is
highly pulsed
o
B - / » The power spectrum
( shows contribution from

4(” Hﬂﬂﬂﬂﬂﬂnm ~~~~~ e harmonics
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Types of gyromagnetic radiation

 Gyromagnetic radiation behaves very differently with
different electron distributions

* A precise Eeneral expression valid for all electron energies is
not available. Instead, we use approximate expressions for
various electron energy regimes

** Non-relativistic or thermal (y — 1 «< 1):

Gyroresonance or cyclotron radiation Thermal
** Mildly relativistic (y — 1~1 — 5):

Gyrosynchrotron radiation
¢ Ultra-relativistic (y — 1 > 1):

Synchrotron radiation Non-thermal



Thermal gyroresonance radiation

* At a given B, thermal gyroresonance radiation is
essentially a “spectral line” centered at sv,,, where
s=1,2,3...isthe harmonic number

* Particularly relevant above active regions at
microwave frequencies — Why? A plo

* Spectral width of a given resonance line

kpT
MeC? L 2

AVv/sv,., =

> wiwg

Very narrow in the corona (~1/3000)
* High opacity only at these “resonance layers”



Thermal gyroresonance opacity

* Two different wave modes: ordinary (o mode) and
extraordinary (x mode, gyrates with the same sense
of rotation as an electron)

g, m

* Opacity for two different wave modes

Teo(s,v,0) = .0133

Where

o = —1 for x mode and 1 for o mode, Lg is the scale length of B

1%
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Which mode has a
larger opacity?
Why?




Gyroresonance optical depth

Thermal gyroresonance opacity
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Gyroresonance emission of a sunspot
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Nonthermal synchrotron radiation

* Ultra-relativistic(y — 1 > 1) Hr

* From a single electron,
adjacent "spikes” are
separated in frequency by \

only Av = Zee ~ |

Y
* Fluctuations in electron
energy, B strength, or pitch
angle cause “broadening” of #wi}
the spikes AT T

—
-

e Spectrum is virtually
continuous /fﬂ
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F(x)

Synchrotron spectrum P(v) from a
single electron
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Synchrotron spectrum of an
optically thin source

* One electron of electron E nearly emits all energy
at a single frequency v = y2v,,

* Optically thin source = to get emissivity j, in
(v,v + dv), just add P(v) = —dE /dt up from all

electrons within (E, E + dE):
| dE
Jyav = _Ef(E)dE

* Assume a power law electron energy distribution:
f(E) = CneE_(S

* The emissivity j, oc y=(0=1)/2



Synchrotron spectrum: optically

thick regime

* Synchrotron brightness
cannot be arbitrarily high
—> self-absorption
becomes important at
low frequencies

* The spectrum has a
power law of slope 5/2
for optically thick source

logf, A

y—(6-1)/2

Optically
thick thin




Gyrosynchrotron radiation

* From mildly relativistic electrons (~1 to several
MeV)

* Expressions for the emission and absorption
coefficient are much more complicated than the
nonrelativistic (thermal gyroresonance) and ultra-
relativistic (synchrotron) case

“exact” approximate
Ramaty 1969 Petrosian 1981
Benka & Holman 1992 Dulk & Marsh 1982, 1985

Klein 1987



Emissivity [erg §' si' HZ' cm )

Emissivity [erg s' s’ Hi' cm?)

lﬁ”ln‘

Spectrum is also more complicated
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(Gyro)synchrotron spectrum
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Gyrosynchrotron in flares

Flare observed by SOHO, GOES, and
: Nobeyama Radioheliograph at 17
e i and 34 GHz
" : g * Microwave: gyrosynchotron
* EUV/SXR: hot thermal plasma

GOES/SXI 6-65 A

From T. Bastian



A schematic m

Bastian et al 1998
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Summary

* Gyromagnetic radiation results from electrons accelerated
in the magnetic field

* Three different regimes based on energy of the source
electrons: gyroresonance, gyrosynchrotron, and synchrotron

* Gyroresonance can be used to diagnose B fields in active
regions

* Gyrosynchrotron can be used to probe flare-accelerated
electrons and diagnose B field in flare loops

* Synchrotron is more relevant to cosmic sources, but still
possible on the Sun (e.g., the mysterious sub-THz flare
component)



