Lecture 8: Radio Observations of Coronal Mass Ejections I

Hale COLLAborative Graduate Education (COLLAGE) Course 2017 Prof. Bin Chen (New Jersey Institute of Technology)

Lectures 7-8 outline

- Radio astronomy preliminaries
 - Radiative transfer
 - Relevant emission mechanisms
 - Types of solar radio bursts
- Radio observations of CMEs
 - CME body
 - Thermal CME
 - Gyrosynchrotron CME
 - Type IV radio bursts
 - CME-driven shocks
 - White light/EUV imaging, UV spectroscopy, and in situ signatures
 - type II radio bursts

This Lecture

Gyromagnetic radiation

- Acceleration experienced in the magnetic field
- Gyroresonance radiation from thermal electrons. Relevant in places with strong B field: e.g., active regions
- Gyrosynchrotron radiation from relativistic electrons. Relevant when high energy electrons are present: e.g., flares and CMEs
- Electron gyrofrequency: one "natural frequency" of the solar corona

$$f_{ce} = \frac{eB}{2\pi m_e c} \approx 2.8B \text{ MHz}$$

How about gyrosynchrotron emission?

- CMEs/flares produce accelerate electrons
- CMEs are "magnetic clouds"

Gyrosynchrotron vs. thermal: from a toy model

From Bastian & Gary 1997

First observation of a gyrosynchrotron "radio CME"

Radio CME = CME cavity (flux rope)?

Why interested in gyrosynchrotron radio CMEs?

- Corona is
 - Optically thin
 - Low B field strength
 - High temperature -> large spectral line broadening
- Extremely difficult to measure B field in the corona
- Gyrosynchrotron radio measurement provides constraints on B and its direction
- CME is one of the most important drivers of space weather. Interplanetary magnetic field (IMF) B_z very important in space weather applications

Impacts of IMF B_z

CME and magnetospheric substorm: an animation

Credit: NASA/THEMIS

CME B field and thermal/nonthermal electron properties

- $B_{CME} \simeq 0.1 \text{few G}$
- n_{th} ~ few x 10⁷ cm⁻³
- $E_e \sim 0.5 5 \text{ MeV}$

Bastian et al. 2001

Gyrosynchrotron or plasma radiation? How to tell?

- Image features
- Spectral features
- Polarization

Solar Type IV Radio Bursts

Weiss 1963 categorized them in two subtypes:

- 1. Stationary type IV (type IVs):
 - Relatively long-duration, broad continuous spectrum, little or no source movement, small source diameter, strong polarization (usually in o mode)

2. Moving type IV (type IVm):

 Fairly short-duration, illdefined spectral features, rapid outward movement through the corona (x100 km/s), sometimes polarized in x mode

From Stephen White

Moving Type IV Radio Bursts

- Ejecting radio blobs associated with CMEs, but usually slower
- Trailing CME front

Smerd & Dulk 1971

Spectral feature

Indication of gyrosynchrotron emission

Bain et al. 2014

B ~ 4 G, $E_{nonthermal}$ ~ 0.001% - 0.1% $E_{thermal}$

Another example from a student in this class

From Sherry Chhabra (NJIT)

Observed by Long Wavelength Array in Owens Valley at ~50 MHz. Optically thick part of the CME GS emission?

Type IVm from CME initialization stage

Carley et al. 2016

Gyrosynchrotron emission from interplanetary CMEs?

Bastian 2007, Pohjolainen et al. 2013

Shocks in the Heliosphere

Why shocks happen?

- When the propagation speed gets faster than the "signal speed" of the medium
- Discontinuity (P, T, ρ , B)
- Example: propagation of a sound wave in an adiabatic medium

MHD shocks

shock

From Lecture 3 (Prof. Longcope)

Shock Jump Conditions

For plane-parallel shock (let's ignore B for now)

Mass Momentum $\rho_1 u_1 = \rho_2 u_2$ $\rho_1 u_1^2 + P_1 = \rho_2 u_2^2 + P_2$ $\frac{1}{2} u_1^2 + \epsilon_1 + \frac{P_1}{\rho_1} = \frac{1}{2} u_2^2 + \epsilon_2 + \frac{P_2}{\rho_2}$ Energy

Downstream Upstream

Reference frame of the shock

Shock Jump Conditions

• Mach number: $M_1 \equiv \frac{u_1}{c_1} = \left(\frac{\rho_1 u_1^2}{\gamma P_1}\right)^{1/2}$ (for a gas that has a polytropic equation of state)

Rewrite jump conditions

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{(\gamma+1)M_1^2}{(\gamma-1)M_1^2+2}$$

$$\frac{P_2}{P_1} = \frac{\rho_2 k T_2/m}{\rho_1 k T_1/m} = \frac{2\gamma M_1^2 - (\gamma-1)}{\gamma+1}$$

$$\frac{T_2}{T_1} = \frac{[(\gamma-1)M_1^2+2][2\gamma M_1^2 - (\gamma-1)]}{(\gamma+1)^2 M_1^2}$$

• For strong shocks $(M_1 \gg 1)$

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} \approx \frac{\gamma+1}{\gamma-1} \qquad P_2 \approx \frac{2\gamma}{\gamma+1} M_1^2 P_1 \qquad T_2 \approx \frac{2\gamma(\gamma-1)}{(\gamma+1)^2} T_1 M_1^2$$
$$= 4 \text{ with } \gamma = 5/3$$

Jump conditions for MHD Shocks

- More terms in momentum and energy conservation equation
- Additional equations from $\nabla \cdot B = 0$ and magnetic flux conservation

$$\rho_1 u_{\perp 1} = \rho_2 u_{\perp 2}$$

$$\rho_1 u_{\perp 1}^2 + P_1 + \frac{B_{\parallel 1}^2}{8\pi} = \rho_2 u_{\perp 2}^2 + P_2 + \frac{B_{\parallel 2}^2}{8\pi}$$

$$\rho_1 u_{\perp 1} u_{\parallel 1} - \frac{B_{\perp 1} B_{\parallel 1}}{4\pi} = \rho_2 u_{\perp 2} u_{\parallel 2} - \frac{B_{\perp 2} B_{\parallel 2}}{4\pi}$$

$$\rho_{1}u_{\perp 1}\left(\frac{\gamma}{\gamma-1}\frac{P_{1}}{\rho_{1}}+\frac{u_{1}^{2}}{2}\right) - \frac{B_{\parallel 1}}{4\pi}\left(B_{\perp 1}u_{\parallel 1}-B_{\parallel 1}u_{\perp 1}\right) = \rho_{2}u_{\perp 2}\left(\frac{\gamma}{\gamma-1}\frac{P_{2}}{\rho_{2}}+\frac{u_{2}^{2}}{2}\right) - \frac{B_{\parallel 2}}{4\pi}\left(B_{\perp 2}u_{\parallel 2}-B_{\parallel 2}u_{\perp 2}\right)$$

$$B_{\perp 1}u_{\parallel 1} - B_{\parallel 1}u_{\perp 1} = B_{\perp 2}u_{\parallel 2} - B_{\parallel 2}u_{\perp 2}$$
5

$$B_{\perp 1} = B_{\perp 2} \tag{6}$$

Shock signatures: white light and EUV imaging

- Diffuse front in white light (LASCO/C2)
- Resulted from density compression: $I \propto n_e l$

From Angelos Vourlidas

Shock signatures: white light and EUV imaging

Kozarev et al. 2011, *ApJ*, 733, 25

EUV wave/shock

- Diffuse front in EUV (SDO/AIA)
- Also resulted from density compression, but $I \propto n_e^2 l$
- Low corona

EUV wave/shock

Shock signatures: UV Spectroscopy

- UV Line broadening and Doppler shifts (SOHO/UVCS)
- Resulted from post-shock plasma heating, density enhancement, and bulk speeds

Constraining shock parameters

	Height	Speed	Density	Compression Ratio		
Date	(R _☉)	$(km s^{-1})$	(10^6 cm^{-3})	$Log(\mathbf{T}_k)$	X	Reference
06/11/98	1.75	1200	1	8.7	1.8	[20]
06/27/99	2.55	1200		<8.2		[19]
03/03/00	1.70	1100	10	8.2	1.8	[12]
06/28/00	2.32	1400	2	8.1		[3]
07/03/02	1.63	1700	5	8.0	2.2	[13]
22/03/02	4.30	1460	0.011	7.3	2.1	[2]
07/05/04	1.86	690	5	<7.0		[15]

TABLE 1. CME-driven Shock Parameters Derived from UVCS data

TABLE 2. Physical Parameter at a CME-driven Shock derived by Bemporad & Mancuso (2010)

	$T_e (10^6 \text{ K})$	$n_e (10^{-4} \text{ cm}^{-3})$	\mathbf{v} (km s ⁻¹)	B (mG)
upstream	0.23	1.1	100	19
downstream	1.9	2.3	424	37

From Vourlidas & Bemporad 2012

CME-driven shocks: in situ signatures

Shocks are good particle accelerators

From Cane & Lario 2006

Type II radio bursts

Type II Observations: Spectrographs

Type II Observations: Spectrographs

Type II observations: Goniopolarimetry and Triangulation

Mäkelä et al. 2016

Type II Observations: Imaging

Type II Observations: Imaging

Type II radio bursts from CME flank

From Carley et al. 2013

Fine structures of type II radio bursts: "Herringbone" structure

 Electron beams escaping both upstream and downstream

Fine structures of type II radio bursts: "Split-band" feature

• Plasma radiation from both shock upstream and downstream, or from different parts of the shock fronts

Type II spectral features: a unified picture?

Holman & Pesses 1983

Summary

- Radio observations track CMEs from birth to Earth
- Sensitive to thermal (core, body), gyrosynchrotron (core, leading edge), and plasma radiation (core, body, shock)
- Provides means of measuring speed, acceleration, width (CME body and shock), and identification of electron acceleration site (type II)
- Can also measure B (CME), n_{th} (CME), n_{nonthermal} (CME), n_{th} (core), T (core), X (shock)
- Complementary to white light and *in situ* observations