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Magnetic Eruption in AIA 304 Å

On August 31st, a C-class 
solar flare caused a 
filament eruption. The 
magnetic structure hit 
Earth with a glancing blow 
provoking lovely auroral
displays on Sep 3.
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The kingpin equation is the momentum equation
(Navier-Stokes augmented by gravity and the Lorentz force) 

Evolution equations for the secondary 
variables
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Induction Equation
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Eliminate all variables but the fluid velocity and the magnetic field.
Use Ohm’s Law to eliminate the electric field. Use Ampère’s Law to 
eliminate the current density.
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Faraday’s Law
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Magnetic Diffusivity
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The quantity 2/4 is called the magnetic diffusivity and the term 
containing it represents the diffusion of magnetic field
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The diffusive nature of this term can be easily recognized if we consider a 
constant diffusivity
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Vorticity Analogy

This equation is identical to the vorticity equation for barotropic
fluids 	 	 ,
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Therefore, the magnetic field evolves in the same fashion that 
vortex lines do. 
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Induction Equation   
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Magnetic Diffusion

Flux Freezing
(the field moves with the fluid)

PRIMARY GOAL
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Example: Decay of the 
Interstellar Field
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interstellar magnetic field is 
much longer than the lifetime 
of the universe (1010 years).

Let’s calculate the time scale for the decay of the interstellar magnetic 
field. The relevant equation is given by the diffusive limit of the 
induction equation

With the parameters
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The Lorentz Force
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Momentum Equation
If we augment the Navier-Stokes equation with gravitational, 
electric and magnetic forces we obtain

Pressure Force

Gravitational Force

Viscous Force

Electric
Force

Magnetic
Force

Lorentz
Force
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Small and ignorable
(non-relativistic)
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Magnetic Forces
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We can use Ampère’s Law to eliminate the current density
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Ampère’s Law
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MHD Momentum Equation
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This form of the momentum equation is important enough to 
get its own slide
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Magnetic Pressure and Tension
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Magnetic Tension and Pressure
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A common form for the Lorentz force can be obtained by using the 
following vector identity
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Full MHD Momentum Equation
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Total 
Pressure

Magnetic Pressure
Magnetic pressure forces arise from gradients of field strength.
Magnetic pressure is isotropic.

Magnetic Tension
Magnetic tension forces arise from curvature of field lines.
Magnetic tension depends on the direction of the field.

Magnetic 
Tension

Magnetic 
Pressure
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Magnetic Tension

Guitar String Analogy
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Magnetic tension is analogous to other tension forces (surface 
tension, tension on a drum head, tension on a guitar string).
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– Tension

- Tangent direction

- Principle normal direction

- Radius of curvature
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The tension pulls along the guitar string 
(in the tangential direction), but the net 
force is in the normal direction. 
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Parallel-Transverse Decomposition
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For simplicity, consider a 2D field. Decompose the forces into components 
that are parallel and transverse to the magnetic field. The parallel (or tangent 
direction) is  while the transverse (or principle normal direction) is  .
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Tension and Curvature
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Consider a field with sinusoidal field lines that varies only in the z direction.

For small 
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Therefore, the magnetic pressure force 
vanishes (to linear order in )
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The Tension
To linear order in , there is a nonzero tension force, however.
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The tension force tries to 
straighten the field line
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tension

Net Force
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Consequences of Magnetic Pressure

Magnetic Evacuation and Buoyancy
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Evacuation of a Flux Tube
Example: A Static Flux Tube

Imagine a straight tube of magnetic flux in equilibrium with its 
surroundings. The tube has a field strength of , and the tube 
is embedded in a nonmagnetized fluid with a pressure of .
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Since the tube is static, the gas 
pressure inside the tube can be 
determined by the requirement that 
the gradient of the total pressure 
vanishes.

In other words the total pressure 
(gas + magnetic) is constant.
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Reduced Gas Pressure and 
Density

Stellar Surface
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Since the pressure (gas plus magnetic) 
must be the same inside and outside 
the tube

tube extP P<

The gas pressure inside is less than 
outside

If the temperature is the same inside 
and outside (due to thermal diffusion), 
then the density is less inside than 
outside.

tube extr r<
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Light Fibers
Solar Surface

Since the density inside a magnetic 
tube is less than the fluid outside, the 
tube’s opacity is less

tube extc c<

Thus the tube radiates more 
efficiently.

On the surface of the sun, large flux tubes (sunspots and pores) are dark
because the fluid inside is cold (the magnetic field inhibits convection and 
the heat flux associated with the convective motions is low).

Small flux tubes are bright because they are partially evacuated with a 
reduced opacity.
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Pores and Bright Points
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Magnetic Buoyancy
Imagine a horizontal flux tube embedded in a gravitationally stratified 
fluid (a star perhaps).

Due to pressure equilibration, the fluid inside the tube is less dense 
than its surroundings. Therefore, the tube is buoyant and should rise.
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Buoyancy Force

tube extr r<
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Yuhong Fan
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The Galactic Magnetic Field

M51 – Whirlpool Galaxy

Optical Map from Hubble

VLA Radio

Field deduced from radio polarization
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Formation of Interstellar Clouds
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Telemachos Ch. Mouschovias 34

Parker Instability

35

Magnetic Energy
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Derive an Energy Equation
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The energy density of the magnetic field is equal to the magnetic 
pressure

Compute the rate of change of the magnetic energy density

We could use the induction equation to evaluate the right hand 
side; however, its more convenient to start with the root equation 
of Faraday’s Law.
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Use Faraday’s Law
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Faraday’s Law
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Poynting Flux

The first term is the divergence of the Poynting flux. 
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Ampère’s Law

Poynting Flux
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Eliminate the Electric Field
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Use the Lorentz transformation and Ohm’s Law
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Magnetic Energy Equation
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Poynting Flux

Ohmic Dissipation

Rate of Work 
Performed on the Fluid
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If the resistivity, , is large enough, one might need to include 
resistive heating (ohmic dissipation) in the internal energy 
equation.

Recap of MHD
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Two Forms of

Momentum  
Equation

Mass Continuity 
Equation

Thermal Energy 
Equation

Magnetic Induction 
Equation

Ohmic Heating
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Magnetic Energy 

Equation

Current Density
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Alfvén’s Theorem
Let Φ be the magnetic flux passing through a closed surface , where 
the surface follows the fluid
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The magnetic flux can change in time in two ways
(1) The magnetic field can evolve.
(2) The surface can evolve.
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– evolution of the surface
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If the same field lines pass through the surface for all time, the flux 
should be constant, Φ 0 .
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Evolution of the Field
The rate of change due to the evolution of the field itself is simply 

1

S

B
ds

t

¶
F = ⋅

¶ò




2

C

B sd dF = ⋅ò
 

The change due to the evolution of the surface arises from the 
instantaneous motion of the boundary. Let be the boundary of the 
surface .  Over time , the boundary moves a distance 	. An element 
of the boundary, sweeps out an area . Therefore,
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Evolution of the Surface
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Divide through by to obtain the rate of change.

( )2

C

B v dlF = ´ ⋅ò
  

( ) ( )a b c a b c⋅ ´ = ´ ⋅
    

( )2

S

B v dsF = ´ ´ ⋅ò
   

Stokes Theorem
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Frozen in Flux
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Insert the two expressions into the rate of change of the flux

Since the expression in the square brackets is zero (due to the induction 
equation)
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