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Magnetic Eruption in AIA 304 Å

On August 31st, a C-class 
solar flare caused a 
filament eruption. The 
magnetic structure hit 
Earth with a glancing blow 
provoking lovely auroral 
displays on Sep 3.

Other AIA Wavelengths

304 Å (50 kK) 131 Å (10 MK)

335 Å (2.5 MK) 171 Å (0.5 MK)

Associated Aurora

November 2010
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Magnetohydrodynamics (MHD)
• The MHD Equations

• The Induction Equation
– Magnetic Diffusivity
– Ideal MHD
– Alfvén’s Theorem & Flux Freezing

• The Lorentz Force
– Magnetic Pressure and Tension
– Magnetic Stress Tensor
– Magnetic Tension
– Consequences of Magnetic Pressure (Magnetic Evacuation & Buoyancy)

• Magnetic Energy
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MHD Equations
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Large Spatial and Temporal Scales
• The relevant scales must be large enough that we can treat the    

plasma as a single fluid and ignore electrostatic waves
	 ≫ Spatial scales are much larger than the Debye length
	 ≫ 1⁄ Time scales are much larger than the inverse plasma frequency

(i.e., we can adopt a continuum, single fluid approximation)

Charge Neutrality
• This is a natural consequence of Large Spatial and Temporal Scales  

as long as the plasma conductivity is high.

Non-relativistic (non-essential, but convenient)
• We will ignore all terms that are proportional to 2/ 2 and smaller.
• This approximation leads to the conclusion that electric fields and 

forces are small compared to magnetic fields and forces.
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The Assumptions of MHD MHD Equations
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The kingpin equation is the momentum equation
(Navier-Stokes augmented by gravity and the Lorentz force) 

Evolution equations for the secondary 
variables

Momentum
Equation

Mass 
Continuity

Internal 
Energy 

Equation

Magnetic 
Induction

Nonadiabatic Terms

Maxwell’s Equations
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(pre-Maxwell)
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Advective Derivative

Equation of State
P RTr=
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Induction Equation
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Magnetic Induction
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The induction equation is really Faraday’s Law from electrodynamics in 
disguise.
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Since the electric field is a passive variable in MHD (its tiny in 
comparison to the magnetic field), we would like to eliminate it. This is 
accomplished by using a generalized form of Ohm’s Law appropriate for a 
moving fluid.

Faraday’s Law

Generalized 
Ohm’s Law

J Es=
 

Ohm’s Law in Electrostatics
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This law should apply in a reference 
frame without plasma motion, i.e., in 
a reference frame co-moving with 
the fluid.

The Lorentz transformations tell us 
what the electric field is in this 
frame:

- Conductivity
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The Induction Equation
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Eliminate all variables but the fluid velocity and the magnetic field.
Use Ohm’s Law to eliminate the electric field. Use Ampère’s Law to 
eliminate the current density.
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Ohm’s Law
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Faraday’s Law

Ampère’s Law
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Magnetic Diffusivity
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The quantity 2/4 is called the magnetic diffusivity and the term 
containing it represents the diffusion of magnetic field
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The diffusive nature of this term can be easily recognized if we consider a 
constant diffusivity
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What Do These Terms Represent?
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Magnetic Diffusion

What’s this term?
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Magnetic Reynolds Number
The relative importance of the two terms is given by the 
Magnetic Reynolds Number
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The Magnetic Reynolds Number defines two regimes

1M R ( )B
v B

t

¶
= ´ ´

¶

  

1M R 2B
B

t
h

¶
= 

¶

 

Ideal MHD Limit

Diffusive Limit
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Vorticity Analogy

This equation is identical to the vorticity equation for barotropic
fluids 	 	 ,
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Therefore, the magnetic field evolves in the same fashion that 
vortex lines do. 

vw = ´
  Vorticity
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Vortex Lines
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We know from fluid dynamics that if the fluid is inviscid, vortex lines 
follow the fluid.
• If a fluid parcel lies on a vortex line, it will forever stay on that line no matter how the 

parcel moves.

• The parcel and vortex line move together.

• If the fluid has viscosity, vortex lines and fluid parcel become decoupled and may slide 
through each other.

By analogy, we expect the magnetic field
to move with the fluid as long as magnetic
diffusion can be ignored.  This property is
called “flux freezing” in MHD.  The field
is said to be “frozen into the plasma”.
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Ideal MHD Limit
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This equation describes a vector field that moves with the fluid.

This property was proved for the vorticity equation by Lord Kelvin with 
“Kelvin’s Vorticity Theorem”.

In MHD the same result was obtained by Hannes Alfvén and is called 
“Alfvén’s Theorem of Flux Freezing”.
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Hannes Alfvén (1908-1995)
Alfvén was a Swedish electrical engineer and 
plasma physicist.

Aurorae
Van Allen Radiation Belts
Magnetic storms of Earth’s magnetic field
Galactic plasma dynamics

Magnetohydrodynamics
(Nobel Prize 1970)
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The Induction Equation
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Magnetic Diffusion

Flux Freezing
(the field moves with the fluid)

Alternate Form
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Since curls and cross products are annoying, often an alternate 
form of the induction equation is used. Use the following vector 
identity,
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Solenoidal Advection
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Example: Stellar Collapse to a 
Neutron Star

Consider a star with
1110  cmR* »

If this star collapses to a neutron star (NS)

100 GB* »
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The neutron star’s field strength can be 
estimated by noting that the magnetic flux is 
conserved (due to flux freezing)

NS *F = F

2 2
NS NSR B R Bp p * *=
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The same number of 
field lines pass 
through a smaller 
cross-sectional area

Flux Conservation


