

How do mean flows arise from convection?

conservation of momentum in MHD (inertial reference frame)

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \left(\mathbf{v} \cdot \nabla \right) \mathbf{v} = -\nabla P + \rho \mathbf{g} + \frac{1}{4\pi} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B} + \nabla \cdot \mathcal{D}$$

Also conservation of mass

$$\frac{\partial \rho}{\partial t} = - \boldsymbol{\nabla \cdot} \left(\rho \mathbf{v} \right)$$

Also - ideal gas equation of state, Induction equation, $\nabla \cdot B = \theta$

And conservation of energy

$$\rho T \left(\frac{\partial S}{\partial t} + \mathbf{v} \cdot \nabla S \right) = - \nabla \cdot \mathbf{q} + \Phi_v + \Phi_B$$

Meridional (r,θ) components of the momentum equation

divide the momentum equation by ρ , average over longitude, take the curl, and grab the φ component of that

$$\frac{\partial \left(\omega_{\phi} \right)}{\partial t} = \lambda \frac{\partial \Omega^{2}}{\partial z} + \\ \text{baroclinic term } \mathcal{B} = \overset{\nabla}{\mathbf{V}} \text{ Fine...So what do these } \underbrace{\mathbf{mean?}} \text{ ion of omentum}$$

$$\mathcal{G} = \left\{ \nabla \times \left\langle (\nabla \times \mathbf{v}') \times \mathbf{v}' + \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi \rho} + \frac{\nabla \cdot \mathcal{D}}{\rho} \right\rangle \right\} \cdot \hat{\phi} \\ + \left\{ \nabla \times \left[\nabla \times \left\langle \mathbf{v}_{m} \right\rangle \right] \times \left\langle \mathbf{v}_{m} \right\rangle \right\} \cdot \hat{\phi} + \left\langle \frac{\nabla P \times \nabla \rho}{\rho^{2}} \right\rangle - \mathcal{B}$$

What do these equations mean?

Start with the meridional one

$$\frac{\partial \left\langle \omega_{\phi} \right\rangle}{\partial t} = \lambda \frac{\partial \Omega^{2}}{\partial z} + \mathcal{B} + \mathcal{G}$$

We know what the first term must be doing from helioseismology

Now interpret <> as a time average as well as a longitudinal average What would it take to establish a steady state?

Something must be trying to establish a CW circulation in the NH, to oppose the Coriolis-induced CCW flow

Most current models (theoretical arguments, mean-field models, convection simulations) point to the baroclinic term $\ensuremath{\mathsf{B}}$

What do these equations mean (cont.)?

meridional flow self-advection

if the stratification is nearly adiabatic and hydrostatic (which it is in the CZ), then

$$\mathcal{B} \approx -\frac{g}{rC_P} \frac{\partial \langle S \rangle}{\partial \theta}$$

if G is indeed negligible in the deep CZ then we get

$$\frac{\partial \Omega^2}{\partial z} = \frac{g}{r\lambda C_P} \frac{\partial \langle S \rangle}{\partial \theta}$$

Thermal Wind Balance

thermodynamic fluctuations

Axial differential rotation is linked directly to the latitudinal entropy gradient

We know the LHS from helioseismology so - assuming this balance is satisfied that tells us the RHS

What does it tell us?

Warm poles ($\partial \langle S \rangle / \partial \theta < \theta$ in NH) needed to offset inertia of differential rotation

What do these equations mean (cont.)?

Now go back to the time dependent equation

Inertia of the DR

induces

CCW circulation

Baroclinicity induces CW circulation

In a steady state they balance but one must be the "driver" and one the response

In other words, one must accelerate the MC and the other must resist it until a balance is reached

The observed poleward flow in solar surface layers (CCW) suggests that the DR establishes the MC through the Coriolis/centrifugal force while baroclinicity regulates the * profile

What do these equations mean?

So - to summarize - the meridional components of the momentum equation regulate the differential rotation profile through thermal wind balance (TWB)

$$\frac{\partial \Omega^2}{\partial z} = \frac{g}{r\lambda C_P} \frac{\partial \langle S \rangle}{\partial \theta}$$

However - note two very important caveats

Caveat 1: This doesn't tell us why the equator spins faster than the poles

For a given S. you can take any solution * and add an arbitrary cylindrical profile * '() and it will still be a solution (geostrophic degeneracy) So, TWB is consistent with an infinite number of * profiles, some solar-like (fast equator, slow poles), some anti-solar (slow equator, fast poles)

Caveat 2: This doesn't tell us what the steady-state MC profile will be

In a statistically steady state, the MC falls out of this equation

What do these equations mean?

First address caveat I from the previous slide: Why does the equator spin faster than the poles?

Recall our mean zonal momentum equation

$$\frac{\partial}{\partial t} \left(\rho \mathcal{L} \right) + \left\langle \rho \mathbf{v}_m \right\rangle \cdot \nabla \mathcal{L} = \mathcal{F}$$

Steady state

$$\langle \rho \mathbf{v}_m \rangle \cdot \nabla \mathcal{L} = \mathcal{F}$$
 $\mathcal{F} \approx -\nabla \cdot \left[\lambda \left\langle \mathbf{v}' v_\phi' \right\rangle \right]$

$$\mathcal{F} \approx -\nabla \cdot \left[\lambda \left\langle \mathbf{v}' v_{\phi}' \right\rangle \right]$$

Revnolds stress!

Angular momentum transport by convection via the Reynolds stress must establish Δ_*

Summary: The Solar Internal Rotation

Differential Rotation

- Photospheric measurements
- Global, local helioseismology
- Monotonic decrease from equator to pole
- Conical mid-latitude contours
- Tachocline, near-surface shear layer
- Maintained by convective Reynolds stress, baroclinicity
- Thermal wind balance in lower CZ (but not in upper CZ)

Meridional Circulation

- Photospheric measurements, local helioseismology
- Poleward (but variable) in surface layers
- unknown deeper down
- maintained mainly by inertia of differential rotation

CU, 5 Feb, 2013

Convection

MC

The Near-Surface Shear Layer (NSSL) A nice illustration of gyroscopic pumping 450 nHz 425 400 375 350 325

A simple thought experiment

Consider a flow that is axisymmetric, non-magnetic, nondiffusive, and that the stratification is adiabatic ($\nabla S=0$)

Then
$$\mathcal{B}=\mathcal{G}=0$$

And our zonal vorticity equation is just...

A steady state is provided by the Taylor-Proudman Theorem

$$O = OC$$

Now, at some time t_0 , start applying a retrograde zonal force $\ensuremath{\mathcal{F}}$ in the NSSL: The system adjusts to a new equilibrium state, still with a cylindrical rotation

Grey lines are Ω contours

Note: the mere existence of a retrograde zonal torque does not guarantee the presence of a NSSL...but it does establish a meridional circulation

Illustration: Gyroscopic Pumping in the solar NSSL

The same retrograde torque that gives rise to the slower Ω also gives rise to the poleward meridional flow

$$\langle \rho \mathbf{v}_m \rangle \cdot \nabla \mathcal{L} = \mathcal{F}$$

 $\left\langle \rho v_{\lambda}\right\rangle =\frac{\partial\Psi}{\partial z} \qquad \left\langle \rho v_{z}\right\rangle =-\frac{1}{\lambda}\frac{\partial}{\partial\lambda}\left(\lambda\Psi\right)$

$$\Psi(\lambda, z) = \left(\frac{d\mathcal{L}}{d\lambda}\right)^{-1} \int_{z_{h}}^{z} \mathcal{F}(\lambda, z') dz'$$

The net longitudinal force determines the meridional flow

(Is poleward meridional flow a surface effect? cf. Hathaway 2011)

$$\Psi(\lambda,z) = \left(rac{d\mathcal{L}}{d\lambda}
ight)^{-1} \int_{z_b}^z \mathcal{F}(\lambda,z')dz' \ z_b = \left(R^2 - \lambda^2
ight)^{1/2}$$