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Scattering and Absorption of
Acoustic Waves by Sunspots

Fourier-Hankel Decomposition

Decompose into cylindrical waves

U1 = [ S [ A @B Ey7) + By @B (k)] e do

A9

Azimuthal Radial Outward
Order Order Waves Waves

A,, and B,, are the amplitudes of the
outward and inward propagating waves,
respectively.

Hankel Functions
H3(2) = T, (z) + iY,,(z)

Lecture 25
MHD Waves

+ Scattering and Absorption of Waves by Sunspots
+ MHD Waves in a Homogeneous Atmosphere

- Linearization
- Alfvén Speed
- Deriving a matrix equation
+ MHD Wave Modes
- Three wave modes (Alfvén, Fast Magnetosonic, Slow Magnetosonic)
- Dispersion Relations
- Polarization
+ Shear Alfvén Wave
- Properties of the Shear Alfvén Wave
+ Fast and Slow Magnetosonic Waves

- Pressure and magnetic forces
- Why is the fast mode fast and the slow mode slow?

Scattering Measurements in
Cylindrical Coordinates

Transform the observed Dopplergrams
info polar coordinates centered on
sunspot (and in quiet sun as a control).

Ui (T 1) = Uy, (1 0:t)

Absorption
vlos i 4,0, fZZ’Amn w)Hﬁ k r) 4e B ( 7(3)(]6 T)] eimPeivt g,

If ‘Am(w)‘ = ‘ ,,m(u)‘ the sunspot is either:

« redistributing the energy between modes (i.e., inward p, is scattered

into outward p, or f)
+ Destroying the acoustic wave energy

These processes are generically called absorption and can be
observationally characterized by an absorption coefficient

) < @ = |B@f
| A @)




Sunspots Devour Acoustic Waves

Sunspots voracious absorb
50% or more of the
acoustic energy that
enters them.

Hankel Decomposition
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MHD Waves in a
Homogeneous Atmosphere

MHD Waves

We start from the MHD equations expressing the conservation of mass,
momentum and energy. We ignore viscosity, gravity, thermal conduction
and other nonadiabatic processes.

inui i D, =, Full
Continuity Equation “p _ —pV - ¥ -Comiuressible
Dt
Dy = V x B)x B
Momentum Equation | p— = —V P + VxB)x B
Dt o 2P
S
Energy Equation E e & I~ Adiabatic
Dt " Dt
Induction Equation 8@73 = % X (17 X E) | Ideal MHD
t

Linearize About a
Homogeneous Background

Let the background fluid be stationary and homogeneous, with constant

density p, and pressure P, as a function of position. Further, consider a
constant background magnetic field of strength By, that points in the z

direction.

i =
b = Bz = constant

(@,1) = B, + B,(&,1)

ool

P, = constant P(Z,t) = F, + B(3,1)

po = constant p(@,t) = py + p,(Z,1)

U@ t) = ﬁ@”

Background Media is Homogeneous This subscript wi(l be
dropped from here on. 12




Linearized MHD Equations

Since the atmosphere is homogeneous (without gravitational stratification)
and the background magnetic field is constant, the linearized form of the
MHD equations is relatively simple.

0, =
Continuity Equation ot —pyV - U
ot
ov = V x B)) x B
Momentum Equation Po LA, -VF + w
ot 4m
Energy Equation % [ %
ot ot
Induction Equation % =V x (17 X QO)
ot

Plane Waves

Since the atmosphere is homogeneous, all of the coefficients in the
previous set of PDEs are constants. Thus, we should seek plane-wave
solutions,

p(Z,t) = py exp(ik ST — iwt)

P, f = 151 exp(ilg P iwt) k = Wavenumber

w = Frequency

U(Z,t) = 5exp(ilg T — iwt)
By(@,t) = 51 exp(il? “ i = iwt)

For simplicity, I will drop all of the tildes from here on forward.

Fourier Transformed Equations

Insert the plane-wave functional form (or Fourier Transform the equations)

to find the following
Continuity
9 _ V-3 —iwp, = —ipyk - T
= = —pV U — | 0
Momentum oD 3
= . B B - k X X
9 _ _%p 4 (VxB)x By ap —iwp,v = —ikP, + (i ) x By
Fo ot ! 4w dm
Energy
% = ¢ 9, ) P = —iwcfpl
ot S ot
= Induction
OB, =~ . = N
1:V><(v>< 0)—>—szlfzk><(v>< 0)

Reduce to a Single Equation

Our goal is to eliminate every variable except the velocity.

We can eliminate the pressure perturbation in favor of the density
perturbation through the energy equation

SER= 7iwcs2p1 —— B = c:pl

We can eliminate the density perturbation through the use of the continuity
equation
—iwp, = —ipyk - U — ) = O

w

The induction equation can be used to eliminate the perturbed magnetic field
L. N
—iwB) = ik x(vaO) — B = 77><(v><B0)
w

(ik x El) X EO
A Alfvén Velocity
B B

V, ==
L] m

—iwpy¥ = —ikP, +

Hannes Alfvén (1908-1995)

Alfvén was a Swedish electrical engineer and
plasma physicist.

Aurorae

Van Allen Radiation Belts

Magnetic storms of Earth's magnetic field
Galactic plasma dynamics

Magnetohydrodynamics
(Nobel Prize 1970)




Simplify
[w? = -V P |o = (2 +V2)E-5) = R - V)V, - )] = (k- V})(E - D)WV,

Remember that the background magnetic field points in the z direction.
B, = B {E-VA =kV,
Vi =Vy2 Vy 9=V,

|<w2 - BV2)E = (2 + V2)(E-9) - k Vi, |F - kVEGE - 9)z

Horizontal Isotropy

We can further simplify be noting that z and y are interchangeable.
Therefore, without loss of generality we may assume k, = 0.

z z
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Matrix Formulation
(0 —B2V2)T = (2 +V})(E-B) - kViv, |k - BVE(E - 0)z
This equation is actually three separate equations, one for each component.

Those three equations are coupled and can be written in a matrix form.

AT = -

A= 0 —k2Vy 0
—k,k.c? 0 —k2c?

z2"s)

—BVE K (S +VE) 0 ke

Zeros because k, = 0

MHD Wave Modes

22

Eigenproblem

AT = -

This is an eigenvalue-eigenvector problem.

=Since the matrix is 3x3, there are three eigenvalues and three
eigenvectors. Each corresponds to a separate wave mode.

*The three eigenvalues w? provide the dispersion relations.
=The eigenvectors provide the polarizations.

=The eigenvectors are orthogonal, and any disturbance can be
expressed as a linear combination of the three wave modes.

23

Dispersion Relations - Eigenvalues
A = —0%) w— (A +1)T =0

If this matrix equation is to have a solution, the determinant of the
matrix must vanish.

det(A +w2]l) =0

After only marginal algebra we obtain the dispersion relation

(2 - 3 )[w! =1 (2 +13)e? + RVE] = o]

24




Three Wave Modes
(w? = B2VE)wh — B2 (2 + VE)w? + K%R2c2VE| = 0

This equation is cubic in w? Thus, there are three unique solutions for w?,

and correspondingly three unique wave modes.
One solution satisfies

W — kZZVA2 -0 ﬁaevaer Alfvén

Two solutions satisfy Fast and Slow

wt — k2 (Cf + V: )w2 + Iczkfcfv,f =0 (\/Av(;%r;?osomc

o I R R

Polarizations - Eigenvectors

Orthogonality of Wave Polarizations
AT = T = (Wf K )i kk 2

- s

— z
Uy =Y

L

The Alfvén wave and the magnetosonic waves have
velocities that are all mutually orthogonal. This is a
consequence of the velocities being eigenvectors.

(B 7)) = (0y - %,) = (%-7,)=0 T

ot

Since the three polarizations are mutually orthogonal, one can
construct any disturbance as a linear superposition of Alfvén waves,
fast magnetosonic waves, and slow magnetosonic waves.

U = ATy + AT + A,

Shear Alfvén Wave

The Shear Alfvén wave satisfies the dispersion relation.

2 2172 _
w —kVi =

The polarization of the eigenvector is purely in the y direction,
perpendicular to both the magnetic field and the wavevector.

U =U,9

The wave is incompressive.

Vi=ik-1=kv =0

vy
p=0
B =0
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W — K2VE - K2 (2 + V) 0 —k,k.c
(A +w)7 = 0 w? — K2V2 0 |5=0
—k k.’ 0 W? — B2
The three eigenvectors give the solution for the % N
velocity for each wave mode. k
The Shear Alfvén wave is polarized in the y direction
=79 B,
Y
A
The magnetosonic waves have polarization in the z-z plane.
= = 2 2.2\ a A 5
U= (wf’s —kicg )m + kkcl 2
26
Shear Alfvén Wave
28

Alfvén Waves are Transverse

The perturbed magnetic field is also purely in the y direction. This can be
shown using the induction equation.

B =-Yx(vxB,)
w
=0,
= k B,
(3,6) = ——=LU, §
w

30




Alfvén Waves Travel along

Alfvé ves are Tensi ve . .
fvén Waves ar nsion Waves Field Lines

Since Alfvén waves are incompressive, they lack perturbations to the
magnetic pressure and the gas pressure. Thus, the restoring force must 2 _ g2y
be magnetic tension. a & z'A T

2D o The dispersion relation is only a function
—iwp, ¥ = —iE + (lk X Bl) X BO of k.. Thus, the group velocity is parallel
0 1 A to the magnetic field.
Magnetic Pressure w = szA
- BB =
R v 2 el G = _ _ 5
8w 4 Ygronp = Viw =V,2
The tension force Thus energy flows along the field
5 @ = P, lines and the waves propagate along
(B i V>B _ (Bo ik )Bl ik BB, J the field. This property even holds in
Am Py “ Yy

An background configurations with
curved field lines.

X 31

Magnetosonic Waves

The two magnetosonic waves satisfy the dispersion relation

) W — k2 (2 4+ VE)w? + BR2VE = 0
Magnetosonic Waves

. drati ation in w?
(or Magnetoacoustic) N .
2 2
s =E(@r)s %\](03 vz - 4];—;031/;

The phase speed is obtained by dividing by the wave number.

_! (¢+v2)+ \/(cf +v2) —4Z—zzc§V§

2
9 w
v, ==
phase [ 9

k

Fast and Slow Modes Phase Speed Diagrams

2 _ L] 2 2 2\ _ Ez 2
Uihasc:%[(cfwﬁ)i (c3+vﬁ)274%chvd vphm_Ql(CswA)i (+v2) ’:ZCSVA}

The sound speed and the Alfvén speed appear symmetrically
Magnetosonic Modes 5 — 0.96 k, 2 4
+ sign — Fast mode  Faster than both ¢, or V,. 7” Ve s

3=15 k.

— sign — Slow mode  Slower than either ¢ or V,.

The detailed behavior depends on the ratio of c, and V,. Traditionally, this
is expressed through the plasma parameter 3, which is defined as the ratio
of the gas pressure to magnetic pressure.

5 P . zi B <1 Strong field limit

B2 /8x V2 B>1 Weak field limit

35 Friedrich's Diagram




Slow and Fast Speeds

1 2 K2
vf)hmzi{(cf+Vﬁ)i (2 +V2) %;évﬁ]

This equation can be expressed in a useful form using the
slow and fast speeds

Tube Speed 2V2
gl =+ V¢t Cusp Speed @ = 2"7*\2
Slow Speed G +Vy
012; = cf + V,f {Fas'r Speed } __________________
1 Note

, The slow and fast wave
] do not actually propagate
) at the slow and fast

| speeds.  Blech!
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If either the sound speed or Alfvén speed are much larger than the other,
the square root term may be simplified.
2 E Ve
C
Uzh _ % il 42 1_2[4] =L, L o0
phase 9 k 9
Cp
. 2
2 _ 2 | 2
Vper = Ci ,{T] et + - Fast Mode
2 4
k k. | cr
2 . z 2 z T
Yiow = |=| ¢ +|=| =+ Slow Mode
k k (/‘
39

Magnetosonic Forces

41

Plasma B-parameter .: -
The tube speed is small if either the sound 2172
speed or the Alfvén speed are small compared A = Vi
to the other. This can be expressed through T2 472
the plasma's 3-parameter. s A
ﬂZSWP:Eé (If-E(:f‘FVj
2 2
B T Vi
f A<l then &<V} é_} 3<<1
Strong field limit 6"21“ N Cs2 c% VK
c% — VA2
small in either limit
f B>1 then VI 2 V2
A (R T, CA
Weak field limit A V2 2 — P <1
9 9 F S
g — ¢ .
Synopsis
Fast Mode
For ¢ <Vi or 652 > Vi
(or equivalently ¢ > ¢ )
Slow Mode
W? = kX + /'
”ﬁlme = [7
Alfvén Mode
W? = V2
2
k
2 _ 2 2
Ubhase = [z] Vi
40
Explicit Forms
There are really only two forces at work: gas pressure and the Lorentz
force. Gas pressure is aligned with the wavevector and the magnetic
forces are perpendicular to the field.
B = 2 (5 ) - ipg (o r
i==HE-T — 7VPI:—T*(k~v)k
o = = . i
M, = (VxB)x B, — M, — _Po’a A%y, &
4 w
Sometimes it's convenient to decompose the magnetic force into a
magnetic pressure IT, and tension T},
D - ip V2 -
m, = 2% g, — | VI = 2L R
w w
12
= ipVE o .
T, =2k (kx
1 w5 G z( y)
42




Force Directions

z -
By
kxy
k
A
%
%
% g
2 <o
S <
5\
o

—>
4

Lorentz Force

Fast Mode

Why is the Fast Mode Fast?

The fast mode is fast because this mode has a polarization that
“maximizes” the restoring force.

2
i ~Sound
Weak Field ;DZ >1 g1 ound Wave
A

Gas Pressure Forces are gnaximized. -
= P9 (7 o\ 7
—VP =- k-v)k
1= (k)

. Vi
Strong Field (‘% >1 p<1 ~Magnetic Wave (Pressure & Tension)
s

Magnetic Forces are maximized. =

g
i, = J”“TA/&UI 3

w? = KWVE + k2 +
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Slow Mode

47

Fast Mode Speeds

Asymptotic Dispersion Relation

Vohase = Crk Phase speed
P 7o~k 2= +V2
Up R Cp F =G A
- ~ I, &
Ugroup = Uphiase — 77 +oe Group speed
v U, & cpk

Properties of the Fast Mode in the Asymptotic Regime (cp << cg)
+ The fast mode propagates at slightly less than the fast speed.
+ The group speed points largely in the direction of the wavevector,

with a small additional component along the field.

46

2
Weck Field 1 > 1
V;

2
Strong Field V% >1 g<1

Why is the Slow Mode Slow?

The slow mode is slow because this mode has a polarization that
“minimizes” the restoring force.

~Alfvénic Tension Wave

Iy
Gas Pressure Forces are minimized. =
ipyc2 - =
-VP = ,%(k . 77) i

w

s
Magnetic Forces are minimized.

=

F 2
ity == ey 5
w




Weak Field Limit 6> 1 Slow Mode Speeds

2 _ 1212 KRV Dispersion Relation (Eigenvalue)
wr=EVy K A ic Di ion Relati
ko wf = kfc?r | T% e symptotic Dispersion Relation
F = wih G AN S Polarization (Eigenvector) v
oy = v
. Vphase — . t+ o Phase speed 2 — _s'A
The slow mode is a tension wave. Not because the pressures are small &+ V3
compared to the tension, but because the gas and magnetic pressure to leading o . .
order cancel each other (equal magnitude and 180 degrees out of phase. = s KW AR e kR o
Vgroup = C1% T a2 7\{7’ + Group speed
Y S & F v
TP — _PS% (i w5\ Vi i
-VP = 77(]“ : U) Eo=1 = Tkzkzvk Properties of the Slow Mode in the Asymptotic Regime (c; << cp)
N ip V2 N i V2 R + The slow mode propagates (phase) slower than the slow speed.
I, = - B o D7k kok
w 7 w *+ The slow mode doesn't propagate (group) perpendicular to the field.
12 12 . . N . .
5 ipgVa T iV e (h s + The group speed points largely in the direction of the field, with a
T ” k.o, (k 2 y) =7 w kv (k % y) magnitude equal fo the slow speed.
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Asymptotics

The following slides slow the path by which one computes the
dispersion relations and polarizations in the asymptotic limits of
strong and weak field.

Bonus Ma-‘-hema-“cs I have also include the traditional derivation of the dispersion

relations for when the wave propagates purely parallel or purely
perpendicular to the magnetic field.

53 54




Asymptotics for the Fast Mode
for Very Small Slow Speed

55

Strong Field Limit 6 <1

Dispersion Relation (Eigenvalue)

w? = k2t — k2 + ...

U o (u2 - kfc? )i + kgrkzcs2 z Polarization (Eigenvector)

In the limit of strong magnetic field, the fast mode is driven largely by
magnetic pressure and tension with a small gas pressure correction.

- N N - R 2 /L'y*]\"’
vm(wz—k2c2)z+kzkzc:z - v:v{z-% ‘/J i
! ;

Transverse Motion (to the field) 57

Weak Field Limit 8 >1

A
W= kzzcgr +L)‘7/)+ Dispersion Relation (Eigenvalue)
o (;

U= (w2 = kfcg ):i + kl,kch z Polarization (Eigenvector)

In the limit of weak magnetic field, the slow mode is largely a tension wave

and behaves much like the Alfvén wave. 5
3
B>1

&>V

k. V

Weak Field Limit 8 > 1

W = kchn — K+ ... Dispersion Relation (Eigenvalue)

U o (w2 — kfcg )i + kxk:zcz z Polarization (Eigenvector)
In the limit of weak magnetic field, the fast mode is acoustic in nature with
a weak magnetic correction

A>1 Ww? =Kk — kel + ...
<>V

Longitudinal Motion 56

Asymptotics for the Slow Mode
for Very Small Slow Speed

58

Weak Field Limit 6> 1

kK2 i ‘ Dispersion Relation (Eigenvalue)

2 _ 1272
w® = kVy

, ] Polarization (Eigenvector)
P

The slow mode is a tension wave. Not because the pressures are small
compared to the tension, but because the gas and magnetic pressure to leading
order cancel each other (equal magnitude and 180 degrees out of phase.

.9 . 2
P (Ra)E o | -k
w w

ipV3 -
OTAkzkzuk

T=uv|kxj+—
g k

e

Transverse Motion (to the wavevector) 59

i 2 -
_71p(;)A kfu (k X y)

60
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Strong Field Limit 6 <1

k; ¢
2 22 : o .
w® = klep + > o
R (/

¥ = (w? = K2 )i + kk.c? 2

Dispersion Relation (Eigenvalue)

Polarization (Eigenvector)

In the limit of strong magnetic field, the slow mode is largely acoustic in
nature. However, the wave only propagates along field lines.

=

<1

E:(w27kfcf)§:+kxkzc§2 -5:1}[27” ;}
Vi

Parallel Motion (to the field) 61

Parallel and Perpendicular
Propagation

Perpendicular Propagation

If the wave is propagating purely perpendicular to the magnetic field kz =0

w?

e v 2 (2 4 vp) -4’;§cgv§

[:]2:%(c§+vf)i%1/(cf+vg)2 / \
. o ]
(2] -t rw)s e on) N2

Nt S

The slow wave doesn't propagate

2
[%] =0 orc? +V;

The fast wave is a magnetosonic pressure
wave 63
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Parallel Propagation
If the wave is propagating purely parallel to the magnetic field k= 0
i ks 2k
W = (S + V) Sq(€ +VR) - 45dnt
Fe=15 k, &3
Wl 1 1 > -
_ 12 2 2 2 2172 S
[k] _5(% +VA)iE,/(cs + V) —4cv? /\
e :
W 1 " \N )
_1ia 2 2 2 A S
(5] =3z ) =5e-w) NS
2 One mode is a sound wave (fast or slow)
=2 or V2
I s A| The other is identical to the Alfvén Wave
(fast or slow) 64
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