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Lecture 23
Helioseismic Inversions

• Wave Cavities
– Wave cavities and propagation diagrams
– Resonances and Eigenfunctions

• Information Content of a Mode’s Frequency
– Eigenproblem
– Rayleigh quotient
– Sensitivity Kernels

• Helioseismic Inversions
– RLS Inversions
– Regularization
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Wave Cavities and 
Propagation Diagrams
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Propagation and Evanescence
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The Helmholtz equation has two different types of behavior:

Propagation – Oscillatory solutions

Evanescence – Exponentially decaying or growing
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Oscillatory EvanescentEvanescent
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Wave Cavities
The waves are largely confined to the region where they propagate.
This area is called a “wave cavity”.

Wave Cavity

The boundaries of the wave cavity are where kz2(z) = 0.
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Propagation Bands in the Sun
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p- and g-Mode Propagation Bands
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Note that the local dispersion relation is quadratic in w2. Hence there 
are two roots (call them w+ and w-). We must be able to write the local 
dispersion relation as follows 

2 2 2 & w w w- +>
High-Frequency
Acoustic Waves

Propagation occurs
when kr

2 > 0.
Low-Frequency
Internal Gravity Waves2 2 2 & w w w- +<

There are two frequency bands over which waves can propagate. These 
bands vary as a function of radius,
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Critical Frequencies 
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The critical frequencies w+ and w- may be obtained by solving the quadratic 
equation that results from the dispersion relation when kr

2 = 0.
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If N2 is very small compared to

( )2 2 2 2 2 2 2
c h hk c N k cw w+ » + +

( )2 2 4 4 4
hN N k cw- » +

Propagation if 
2 2 2

c Lw w w> + Acoustic Waves

2 2Nw < Internal Gravity 
Waves

= k c2 2 2
L hw

Lamb Frequency
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L hk cw º
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Sir Horace Lamb (1849-1934)
Lamb was a British applied mathematician 
who authored several influential books on 
classical physics (still in print)

Hydrodynamics (1879)

Dynamical Theory of Sound (1910)

“I am an old man now, and when I die and 
go to heaven there are two matters on 
which I hope for enlightenment. One is 
quantum electrodynamics, and the other is 
the turbulent motion of fluids. And about 
the former I am rather optimistic.”

- Sir Horace Lamb, 1932
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w+ and w- within the Sun

2
Lw

2N

2
cw

2w-

2
+w

20l =

10l =

30l =

Lamb Frequency
2

2 2 2
L h 2

( 1) ( )l l c r
k c

r
w

+
º =

11

Zones  of Propagation

Propagating Acoustic Waves 

Propagating Gravity Waves

The boundaries of the wave cavities are specified by 2 2w w=

Evanescent Waves

20l =
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Propagation Bands In 
Evolved Stars
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Red Giant – a UMa
1l = 4.25 M

Burnt He core

H burning shell

Deep convective 
envelope

Mixed modesL,Nw w<

L,Nw w>
2N

2
Lw

m

mean molecular 
weight

m =
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Mixed Modes

Acoustic Regime

Gravity Wave
Regime

nw

Fr
eq

ue
nc

y

Radius

2N

2
+w

This is a schematic example of a mode that has both p-mode 
and g-mode characteristics. It has oscillations in both cavities.
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Limiting Dispersion Relations
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High-Frequency Limit 
(p modes)

10l >For 

L hN k cw =

Thus for acoustic waves we 
can ignore the buoyancy 
frequency. 
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Set the buoyancy frequency to zero in the local dispersion relation
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Total wavenumber
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Low-Frequency Limit
(g modes)

10l >For 

L hN k cw =

For internal gravity waves
we can ignore terms involving 
the inverse sound speed. 
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Set the sound speed to infinity in the local dispersion relation
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Resonances
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Resonance Condition

r

y

1r 2r

The radial resonance condition is that the solutions is finite at the 
center of the star and that the energy is finite. This last requirement 
requires that the solution decays (instead of grows) with height above 
the photosphere.

Finite at 
r = 0

Diverges at 
r = 0

Diverges as 
r → ∞

Finite as 
r → ∞
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Frequency Sequence

p1
p2

p3
p4

p5

g1

g2 g3
g4

g5 (n = –5)

p6
p7

p8

2
1w

2
3w

2
5w

2
7w
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p2

f

p1

p3

p4

p20

g modes?

The sequence of p modes is 
observed in the sun.

The g modes would be very 
low frequency and have yet 
to be observed.
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Eigenfunctions
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p modes g modes
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Information Content of a 
Mode Frequency
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Eigenvalue Equation
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Remember last time I showed that the sun’s oscillations obeyed a 
Helmholtz equation in radius , and given boundary conditions formed an 
eigenvalue-eigenfunction problem.
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If we take the high-frequency limit (p modes), then we can express this 
differential equation in a standard eigenproblem form
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Multiply through by the square of the sound speed and rearrange
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Defining the differential operator ,

we can write this ODE in the form of a
standard eigenvalue equation.

2 0nl nl nly w y+ =or

Note:
 is a differential operator that 
depends on the sound speed and 
the acoustic cutoff frequency 
(or density).
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Sturm-Liouville System

The operator  is a Sturm-Liouville operator. Therefore, we immediately 
know that its eigenfunction are orthogonal with a weight function. The 
orthogonality integral is over the entire interior of the star, from its 
center r = 0 to its surface r = R.

2 0n n ny w y+ =
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( ) ( ) ( ) 
R

n p npW r r r dry y d=ò

2

1
( )  

( ) ( )

R
W r

Mg R c r
=

M = Stellar Mass

R = Stellar Radius

g(R) = Surface gravity

Integrate over 
the entire star

Allows the normalized eigenfunctions 
to retain their physical units.

Drop l index for 
notational simplicity.
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What use are the 
Eigenfrequencies?

The eigenfrequencies are a weighted spatial average of the interior 
properties of the star. To see this we will compute the Rayleigh Quotient.

The Rayleigh Quotient is a useful quantity that allows one to prove all 
sorts of mathematical niceties about the eigenvalues of a differential 
equation.
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John William Strutt (1842-1919)
aka Lord Rayleigh

British Physicist
•Acoustics (Sound localization in human

hearing, 1900) 
•Optics (Rayleigh Criterion, Rayleigh-Jeans

law 1900, Rayleigh scattering – why is 
the sky blue?)

•Ferromagnetism (Rayleigh Law 1887)
•Chemistry (discovered the element argon

with Ramsay, Nobel Prize 1904)
•Hydrodynamics (Rayleigh-Bénard

convection 1916, Rotating Couette
flows 1880 & 1916, Rayleigh-Taylor
instability 1883)

Lord Rayleigh had his fingers in everything 
physical and mathematical.  His name 
appears over and over again in a variety of 
contexts.
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Computing the Rayleigh Quotient

To compute the Rayleigh Quotient, we multiple the ODE by an 
eigenfunction and the weight function and then integrate over the domain 
(if you know what this means, we take the inner product in Hilbert space of 
the ODE with an eigenfunction). Then solve for the eigenvalue.

2

0

 0
R

n n n nW dry y w yé ù+ =ê úë ûò  Integrate over 
the entire star

Rearrange terms
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For convenience, drop the 
horizontal quantum number l
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The integral on the left-hand side is our orthogonality integral 
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Sensitivity Kernels
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This can be rewritten in a more illustrative form by defining kernel functions.
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( )2 2
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2( )n nr Wyº

The frequencies are a weighted average of the properties of the stellar 
interior. The weights depend on the eigenfunctions. Therefore, the 
frequencies are an average of the stellar properties only within the 
acoustic cavity for that mode.

Kernel for the sound speed

Kernel for the cut-off frequency
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Perturbative Techniques
The Rayleigh Quotient is rarely used directly in practice.  When trying to 
use measured frequencies to deduce the internal properties of a star, the 
eigenfunctions (and therefore the kernels) aren’t known until you have 
already solved the problem. Because of this difficulty, perturbation theory 
is usually employed. 

Assume that a stellar structure aficionado has provided us with a reference 
stellar model, which does a good job of predicting the eigenfrequencies (it’s 
a good model but not perfect). 

2 2( ) ( )c r c r= 
2 2
c c( ) ( )r rw w= 

The tilde 
indicates the 
reference model

Reference model provides both atmospheric profiles and modes

2 0n n ny w y+ =  
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R

n p npW dry y d=ò  
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We can then safely assume that the true 
eigenfunctions and eigenfrequencies can 
be treated perturbatively as well.

Perturbations
Assume that the true stellar profiles of sound speed and cutoff frequency 
are small perturbations from the reference model (remember that the 
reference model is a good model).

2 2 2( ) ( ) ( )c r c r c rd= +

2 2 2
c c c( ) ( ) ( )r r rw w dw= +

2 2 2
n n nw w dw= +

( ) ( ) ( )n n nr r ry y dy= +

d= +  

Note:
The eigenfrequencies and 
eigenfunctions for the 
reference model are known.

The true eigenfrequencies 
(and hence the perturbation 
to the frequencies) can be 
measured.

What isn’t known is the 
atmospheric perturbations 
dc2 and dwc

2.
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Sensitivity Kernel for the 
fractional perturbation in 
the sound speed

Sensitivity Kernels

  

2 2
c( )n nr Ww yº 

Sensitivity Kernel for the 
fractional perturbation in 
the cutoff frequency

Using standard perturbation theory, where one assumes that 
differences between the reference model and the real star are small, 
one can derive† the following integral equation

†See the end of this lecture for a full derivation
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Mode Kernels  2
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Helioseismic Inversions
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Coupled Integral Equations

2
2

2
( )  ln ln ln

c
r dr

c

d
dw s= ò  

Consider a case where we wish to ignore the effects of ionization. (I’m 
doing this solely for simplicity of argument.) In such a situation, the 
density perturbation is linearly related to the sound speed perturbation. 
Frequency observations can then be characterized as follows

Observational 
Data

Observational 
Error

Our goal is to invert this set of coupled integral equations to obtain the 
internal structure.

Sensitivity Kernels 
(Reference Model) Unknown!

The aj are the model’s free parameters and the 
parameterization could be an expansion in a set 
of basis functions (such as sines, Chebyshev
Polynomials, etc.).

The parameters could also be the value of the 
sound speed perturbation dc2 at a 
predetermined grid of radii rj. The perturbed 
sound speed at radii in between grid points 
might be defined through interpolation (spline, 
bilinear, etc.).

Regularized Least Squares 
(RLS) Inversion
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We try to describe the internal sound speed perturbation with a
parameterization.
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Goodness of Fit
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In an RLS inversion the parameters aj are chosen to minimize the 
goodness of fit (in a least square sense).

Estimate of the 
measurement errors

Data
(Observed)

Fitting function

Sensitivity Kernel
(Reference Model)
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1
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Parameters
(Unknown)Sum over 

Measured Modes

Regularization
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The solution obtained is not ensured in any way of being smooth. 
One could (and will) get a solution where f possesses many extreme 
wiggles with radius. The way to rectify this problem is to include a 
term in the goodness of fit that penalizes wiggly functions. This is 
called regularization. One can choose any penalty (or regularization) 
term that accomplishes this, but in practice one often takes
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2 2
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0 0
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R R

nl nl
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r f r dr dr

r
c dw l
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Trade-off 
Parameter

The trade-off parameter l can be freely chosen. The higher its 
value, the smoother the solution. However, the higher the value, 
the higher the error in the solutions as well (hence trade-off).

41 42

Bonus Feature
Perturbation Theory
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Perturbation Theory

43

What follows is a demonstration of how perturbation theory can be used 
to calculate sensitivity kernels for a given stellar reference model.
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Reference Model
The Rayleigh Quotient is rarely used directly in practice.  When trying to 
use measured frequencies to deduce the internal properties of a star, the 
eigenfunctions (and therefore the kernels) aren’t known until you have 
already solved the problem. Because of this difficulty, perturbation theory 
is usually employed. 

Assume that a stellar structure aficionado has provided us with a reference 
stellar model, which does a good job of predicting the eigenfrequencies (it’s 
a good model but not perfect). 

2 2( ) ( )c r c r= 
2 2
c c( ) ( )r rw w= 

The tilde 
indicates the 
reference model

Reference model provides both atmospheric profiles and modes

2 0n n ny w y+ =  

0

 
R

n p npW dry y d=ò  The eigenfunctions of the reference model 
form a complete orthogonal set.
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We can then safely assume that the true 
eigenfunctions and eigenfrequencies can 
be treated perturbatively as well.

Perturbations
Assume that the true stellar profiles of sound speed and cutoff frequency 
are small perturbations from the reference model (remember that the 
reference model is a good model).

2 2 2( ) ( ) ( )c r c r c rd= +

2 2 2
c c c( ) ( ) ( )r r rw w dw= +

2 2 2
n n nw w dw= +

( ) ( ) ( )n n nr r ry y dy= +

d= +  

Note:
The eigenfrequencies and 
eigenfunctions for the 
reference model are known.

The true eigenfrequencies 
(and hence the perturbation 
to the frequencies) can be 
measured.

What isn’t known is the 
atmospheric perturbations 
dc2 and dwc

2.
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Perturb the Operator
Remember the operator depends on the sound speed and acoustic 
cutoff frequency.
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The perturbed operator 
depends linearly on the 
perturbed thermodynamic 
variables (unknowns)
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Perturbation Equation
Perturb the wave equation and keep only the terms that are linear in the 
perturbation

( )2 0n nw y+ =

Remember, that the 
perturbed operator 
contains the atmospheric 
perturbations that we 
would like to deduce.( ) ( )2 2 0n n n nw dy d dw y+ + + =  

Knowns Unknowns

Linearized ODE for perturbations

Reference Model Eigenproblem

( )2 0n nw y+ = 

2
2 2 2

h c2

d
c k

dr
d d dw

æ ö÷ç ÷= - -ç ÷ç ÷çè ø


48

Expansion in Reference 
Eigenfunctions

The eigenfunctions of the reference model form a complete orthogonal 
set. Therefore, we can represent any reasonable function as a linear 
combination of eigenfunctions.

Expand the perturbed eigenfunctions in the eigenfunctions of the 
reference model 

( ) ( )n np p
p

r A rdy y= å 

( ) ( )2 2 0n n n nw dy d dw y+ + + =  

Insert this expansion into the ODE for the perturbations

( ) ( )2 2
n np p n n

p

Aw y d dw y+ = - +å   
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( ) ( )2 2
np n p n n

p

A w y d dw y+ = - +å    

( ) ( )2 2 2
np p n p n n

p

A w w y d dw y- + = - +å    

Use the eigenvalue equation for the reference model

( ) ( )2 2
n np p n n

p

Aw y d dw y+ = - +å   

2  n n ny w y= -  

Transfer the operator on the left inside the summation

( ) ( )2 2 2
np n p p n n

p

A w w y d dw y- = - +å    
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Inner Product in Hilbert Space

Multiply by and integrate over the entire star

( ) ( )2 2 2

0 0

  
R R

np n p p n n n n
p

A W dr W drw w y y y d dw y- = - +å ò ò     

( ) ( )2 2 2
np n p p n n

p

A w w y d dw y- = - +å    

Use the orthonormality of the eigenfunctions 
of the reference model to eliminate the LHS 
and rewrite the term with perturbed frequency. 0
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nWy
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Perturbed Frequency

In the parlance of quantum mechanics, the perturbed frequency is 
proportional to the diagonal matrix elements of the perturbed operator

2 n
n n n ndw y d y d= - = -  

Remember our previous derivation of the 
perturbed operator
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d
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We can now define sensitivity kernels for the fractional perturbations in 
the atmospheric profiles.

( )  

2 2
h( )n n n nr c W ky y y¢¢º - -   

Sensitivity Kernel for the 
fractional perturbation in 
the sound speed

Sensitivity Kernels
2
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h c2

0

 
R

n n n n
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2 2
c( )n nr Ww yº 

Sensitivity Kernel for the 
fractional perturbation in 
the cutoff frequency


