ASTR 7500: Solar \& Stellar Magnetism

Hale CGEP Solar \& Space Physics

Profs. Brad Hináman \& Juri Toomre
Lecture 22 Tues 11 Apr 2013
zeus.colorado.edu/astr7500-toomre

Lecture 22

Acoustic-Gravity Waves

- Restoring Forces

Which ones are important?

- Pressure fluctuations and sound waves

Buoyancy fluctuations and internal gravity waves
Surface gravity waves

- Wave Equation for Acoustic-Gravity Waves Linearize about a steady background atmosphere
Derive a buoyancy force equation
Derive a wave equation for the dilation
Examine the special case of the f mode
- Local Dispersion Relation
- Standard form
- Sphericity

Momentum Equation

Consider the inviscid form of the Navier-Stokes equation, in the presence of gravity in a rotating reference frame.

Which Forces are Important

In the solar interior, when compared to a 5 minute period oscillation
the time scale associated with the Lorentz force and Coriolis force are small, and those forces can be ignored.

Some Preliminaries

We will look at pressure and buoyancy fluctuations separately and briefly investigate the properties of the waves that each enables. But, first we need to discuss several preliminary issues.

Lagrangian and Eulerian Derivatives
Consider some property f of the fluid. f could be scalar such as the mass density or pressure; but, it could also be a vector such as the velocity

The Eulerian time derivative of f is the rate of change one sees at a fixed position,

Eulerian time derivative $\frac{\partial f}{\partial t}$
The Lagrangian time derivative (or the advectiv derivative) is the rate of change one sees when following a parcel of fluid
Lagrangian time derivative $\frac{D f}{D t}=\frac{\partial f}{\partial t}+\vec{v} \cdot \vec{\nabla} f$

Adiabaticity

Adiabatic Oscillations

We will assume that the oscillation occurs rapidly enough that we can ignore energy loss during wave cycle. This means that the thermal loss time is much longer than a wave period.

$$
\tau_{\text {thermal }} \gg \omega^{-1} \begin{aligned}
& \begin{array}{l}
\text { determined by thermal } \\
\text { conduction, radiative losse } \\
\text { ionization, viscosity, etc. }
\end{array}
\end{aligned}
$$

Such oscillations are called adiabatic, and we know from thermodynamics that the pressure and density are related

Adiabatic Energy Equation $\rho^{-\gamma} P=$ constant

$$
\text { Adiabatic Exponent } \quad \gamma=5 / 3 \quad \text { (for an ideal gas) }
$$

Energy Equation

$$
\rho^{-\gamma} P=\text { constant }
$$

The energy equation can be written in a more useful form by taking the time derivative for a moving fluid parcel
$\rho^{-\gamma}\left(\frac{D P}{D t}-\frac{\gamma P}{\rho} \frac{D \rho}{D t}\right)=0$
This last equation is equivalent to

$$
\frac{D P}{D t}=c^{2} \frac{D \rho}{D t}
$$

Pressure Fluctuations and

 Sound Waves
Linearize about a Homogeneous Background

Assume that the oscillations are small fluctuations around a static, steady, homogeneous atmosphere

$$
\begin{aligned}
P(\vec{x}, t) & =P_{0}+P_{1}(\vec{x}, t) \\
\rho(\vec{x}, t) & =\rho_{0}+\rho_{1}(\vec{x}, t) \\
\vec{v}(\vec{x}, t) & =\vec{v}_{1}(\vec{x}, t)
\end{aligned}
$$

Linearized Equations

Insert the previous expansions into the fluid equations and discard
nonlinear terms
$\underset{\text { Equation }}{\text { Momentum }} \rho \frac{D \vec{v}}{D t}=-\vec{\nabla} P \xrightarrow{\frac{D}{D t}=\frac{\partial}{\partial t}+\vec{v} \cdot \vec{\nabla}} \rho_{0} \frac{\partial \vec{v}_{1}}{\partial t}=-\vec{\nabla} P_{1}$

(Adiabatic) Energy
Equation

$$
\frac{D P}{D t}=-\rho c^{2} \vec{\nabla} \cdot \vec{v} \longrightarrow \frac{\partial P_{1}}{\partial t}=-\rho_{0} c^{2} \vec{\nabla} \cdot \vec{v}_{1}
$$

Wave Equation

We can combine the momentum and energy equations to obtain a single PDEs for the velocity
$\left.\rho_{0} \frac{\partial \vec{v}_{1}}{\partial t}=-\vec{\nabla} P_{1} \frac{\partial P_{1}}{\partial t}=-\rho_{0} c^{2} \vec{\nabla} \cdot \vec{v}_{1}\right]\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \nabla^{2}\right) \vec{v}_{1}=0$
Remember where the terms came from

Acoustic Dispersion Relation

In a homogeneous atmosphere, the solutions are exponentials

$$
\sim e^{i \vec{k} \cdot \vec{x}} e^{-i \omega t}
$$

and sound waves have the following simple dispersion relationship

Buoyancy Fluctuations and Internal Gravity Waves

According to Archimedes' principle, the buoyancy force is equal to g times the density difference between the parcel and its new surroundings

$$
F_{\text {buoy }}=g\left\{\rho_{\substack{\text { Background } \\
\text { density at new } \\
\text { position }}} \quad \begin{array}{c}
\text { Parcel } \\
\text { density at new } \\
\text { position }
\end{array}\right]
$$

Expand the background density for small displacements

$$
\begin{gathered}
F_{\text {buoy }}=g\left\{\left[\rho_{0}\left(z_{0}\right)+\frac{d \rho_{0}}{d z} \Delta z\right]-\left[\rho_{0}\left(z_{0}\right)+\delta \rho\right]\right\} \\
\delta \rho=-\frac{g \rho_{0}}{c^{2}} \Delta z \\
F_{\text {buoy }}=g\left(\frac{d \rho_{0}}{d z}+\frac{g \rho_{0}}{c^{2}}\right) \Delta z
\end{gathered}
$$

Brunt and Väisälä

Vilho Väisälä (1889-1969)

- Finnish mathematician, physicist and meterologist
- Inventor of meteorological instruments (balloon flights)

Sir David Brunt (1886-1965)

- Welsch meterologis \dagger
- Worked on dispersal of fog and other substances (including chemical warfare during the WWI)

Internal Gravity Wave Dispersion

$$
\begin{array}{ll}
\text { Stability Condition } \\
N^{2}>0 & \text { Stable, oscillations } \\
N^{2}<0 & \text { Unstable, convection }
\end{array}
$$

$$
\frac{\partial^{2} \Delta z}{\partial t^{2}}=-N^{2} \Delta z
$$

$$
N^{2} \equiv g\left(\frac{1}{H}-\frac{g}{c^{2}}\right)
$$

Internal Gravity Wave Dispersion Relationship

Surface Gravity Waves

Surface Gravity Waves

In addition to internal gravity waves there is another family of gravity waves called surface gravity waves.

- Internal gravity waves - "reside" wherever $N^{2}>0$
- Surface gravity waves - "reside" on surfaces with rapid density change

f mode (fundamental)
$\sim e^{k z} e^{i(k x-\omega t)}$
$\omega^{2}=g k$

The ocean-air interface is one example and the photosphere is another.

Part 2
 Wave Equation for Acoustic-Gravity Waves

Fluid Equations

We start from the fluid equations expressing the conservation of mass momentum and energy. We ignore viscosity, thermal conduction, ionization, radiative transfer, and other nonadiabatic processes.

Momentum Equation	$\rho \frac{D \vec{v}}{D t}$$=-\vec{\nabla} P+\rho \vec{g}$
Continuity Equation	$\frac{D \rho}{D t}$

Both pressure and gravitation have $\quad \vec{g}=$ Gravitational Acceleration been included as restoring forces

Linearize the Fluid Equations

Consider a vertically-stratified, compressible fluid in a uniform gravitational field (aka a plane-parallel atmosphere)

Background Atmosphere
Hydrostatic Balance

Note: The hydrostatic relation I doesn't uniquely define the atmosphere. We also need the atmosphere. We also need the
temperature profile $T=T(z)$ I temperature profile $T=T(z)$
I or, equivalently, $c=c(z)$ Ior, equivalently, $c=c(z)$

Fluctuation Equations

$$
\begin{aligned}
& \text { For convenience drop the "1" subscript from the velocity. } \\
& \qquad \begin{array}{r}
\text { Continuity Equation } \\
\text { Horizontal Momentum Equation } \\
\frac{\partial \rho_{1}}{\partial t}+v_{z} \frac{d \rho_{0}}{d z}=-\rho_{0} \vec{\nabla} \cdot \vec{v} \\
\rho_{0} \frac{\partial \vec{v}_{\mathrm{h}}}{\partial t}=-\vec{\nabla}_{\mathrm{h}} P_{1} \\
\text { Vertical Momentum Equation } \\
\rho_{0} \frac{\partial v_{z}}{\partial t}=-\frac{\partial P_{1}}{\partial z}-g \rho_{1} \\
\text { Energy Equation } \begin{array}{r}
\frac{\partial P_{1}}{\partial t}+v_{z} \frac{d P_{0}}{d z}=-\rho_{0} c^{2} \vec{\nabla} \cdot \vec{v} \\
\vec{v}_{\mathrm{h}} \equiv v_{x} \hat{x}+v_{y} \hat{y} \quad \text { Horizontal velocity } \\
\vec{\nabla}_{\mathrm{h}} \equiv \hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y} \quad \text { Horizontal gradient }
\end{array} \\
\text { where I have defined }
\end{array} \\
& \hline
\end{aligned}
$$

Invoke Hydrostatics

The pressure gradient appearing in the energy equation can be eliminated using the hydrostatic relation valid for the background atmosphere

Energy Equation

Eliminate the Fluctuating Density

$$
\begin{gathered}
\frac{1}{\rho_{0}} \frac{\partial}{\partial t}(\text { Horizontal Momentum }) \Rightarrow \frac{\partial^{2} \vec{v}_{\mathrm{h}}}{\partial t^{2}}=-\vec{\nabla}_{\mathrm{h}} \frac{\partial}{\partial t}\left(\frac{P_{1}}{\rho_{0}}\right) \\
\frac{1}{\rho_{0}} \frac{\partial}{\partial t}(\text { Vertical Momentum }) \Rightarrow \frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial z} \frac{\partial P_{1}}{\partial t}-\frac{g}{\rho_{0}} \frac{\partial \rho_{1}}{\partial t} \\
\frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial z} \frac{\partial P_{1}}{\partial t}+\frac{g}{\rho_{0}}\left(v_{z} \frac{\partial \rho_{0}}{\partial z}+\rho_{0} \vec{\nabla} \cdot \vec{v} \quad \frac{\text { Insert the continuity }^{\substack{\text { equation to eliminate } \rho_{1} \\
\partial t}-v_{z}} \frac{d \rho_{0}}{d z}-\rho_{0} \vec{\nabla}}{\frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial z} \frac{\partial P_{1}}{\partial t}-\frac{g v_{z}}{H}+g \vec{\nabla} \cdot \vec{v}} \quad \begin{array}{l}
\text { Density Scale Height } \\
H^{-1} \equiv-\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d z}
\end{array}\right.
\end{gathered}
$$

Derive a Buoyancy Force

 Equation
Where's the Buoyancy?

We might expect that the buoyancy frequency should appear somewhere.
$\frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial z} \frac{\partial P_{1}}{\partial t}-\frac{g v_{z}}{H}+g \vec{\nabla} \cdot \vec{v}$

$\begin{aligned} & \text { Insert the energy equation } \\ & \text { to eliminate } P_{1} \text { in the term } \\ & \text { with } 1 / H\end{aligned} \quad \frac{\partial P_{1}}{\partial t}=\rho_{0}\left(g v_{z}-c^{2} \vec{\nabla} \cdot \vec{v}\right)$
$\frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{\partial}{\partial z} \frac{\partial}{\partial t}\left(\frac{P_{1}}{\rho_{0}}\right)+\frac{g v_{z}-c^{2} \vec{\nabla} \cdot \vec{v}}{H}-\frac{g v_{z}}{H}+g \vec{\nabla} \cdot \vec{v}$
$\frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{\partial}{\partial z} \frac{\partial}{\partial t}\left(\frac{P}{\bar{\rho}}\right)-c^{2}\left(\frac{1}{H}-\frac{g}{c^{2}}\right) \vec{\nabla} \cdot \vec{v}$

Synopsis

We have reduced the original four equations to three. We have also written the vertical momentum equation such that gravitation and a portion of the pressure force have been combined into buoyancy.

> Adiabaticity

$$
\text { (1) } \frac{\partial P_{1}}{\partial t}=\rho_{0}\left(g v_{z}-c^{2} \vec{\nabla} \cdot \vec{v}\right) \quad \begin{gathered}
\text { Produces } \\
\text { Sound wave }
\end{gathered}
$$

Horizontal Momentum

$$
\frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{\partial}{\partial z} \frac{\partial}{\partial t}\left(\frac{P_{1}}{\rho_{0}}\right)-\frac{N^{2} c^{2}}{g} \vec{\nabla} \cdot \vec{v}
$$

Buoyancy Frequency

$$
N^{2} \equiv g\left(\frac{1}{H}-\frac{g}{c^{2}}\right)
$$

The buoyancy term is proportional to both
the square of the buoyancy frequency (as expected)
the dilation (or divergence of the velocity)

Then, after a fair amount of work ${ }^{\dagger}$. .

Wave Equation

one can derive a single ODE for the dilation

$$
\chi=\vec{\nabla} \cdot \vec{v}
$$

Since, the atmosphere is temporally steady and horizontally homogeneous (but vertically stratified), the solution can be written as a horizontal plane wave with the following form

Horizontal Wavenumber

$$
\chi(\vec{x}, t)=\chi(z) e^{i\left(\vec{k}_{\mathrm{h}} \cdot \vec{x}-\omega t\right)}
$$

$$
\vec{k}_{\mathrm{h}} \equiv k_{x} \hat{x}+k_{y} \hat{y}
$$

$$
\begin{gathered}
\text { 2nd order ODE in the height } \\
\left\{\frac{d^{2}}{d z^{2}}-\frac{1}{H} \frac{d}{d z}+\left[\frac{1}{H^{2}} \frac{d H}{d z}+\frac{\omega^{2}}{c^{2}}+k_{\mathrm{h}}^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right]\right\}\left(c^{2} \chi\right)=0
\end{gathered}
$$

$$
N^{2} \equiv g\left(\frac{1}{H}-\frac{g}{c^{2}}\right) \quad H^{-1} \equiv-\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d z}
$$

The f mode

Incompressive Waves?

Horizontal Plane Waves

Since the atmosphere is temporally steady and horizontally homogeneous, we can assume horizontal plane waves
If we are going to work in a higher order variable like the dilation, we

$$
\vec{v}(\vec{x}, t)=\vec{v}(z) e^{i\left(\overrightarrow{k_{n}} \cdot \vec{x}-\omega t\right)}
$$

Dilation $=$ Divergence

We have yet to use the definition of the dilation

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{v}=i \vec{k}_{\mathrm{h}} \cdot \vec{v}_{\mathrm{h}}+\frac{\partial v_{z}}{\partial z}=0 \\
& \vec{v}_{\mathrm{h}}=i \frac{g \vec{k}_{\mathrm{h}}}{\omega^{2}} v_{z} \xrightarrow{v_{z}=\frac{g}{\omega^{2}} \frac{\partial v_{z}}{\partial z}} \xrightarrow{\omega^{2}=g k_{\mathrm{h}}} \\
& \qquad\left(-\frac{g k_{\mathrm{h}}^{2}}{\omega^{2}}+\frac{\omega^{2}}{g}\right) \vec{v}_{\mathrm{h}}=i \hat{k}_{\mathrm{h}} v_{z} \quad \begin{array}{l}
\text { Circular } \\
\text { Motion }
\end{array} \\
& \text { The solution we have been chasing down turns out } \\
& \text { to be a surface gravity wave or the } \mathrm{f} \text { mode }
\end{aligned}
$$

f mode (fundamental mode)

This wave (with zero dilation) doesn't depend on
the sound speed
$c(z)$
 gravity wave

The wave only depends on the gravitational acceleration and it lacks vertical nodes.

Therefore, this wave is

- Incompressive (zero dilation)
- A surface gravity wave (deep water wave)
- The f mode (fundamental)

Part 3
 Local Dispersion
 Relationship

$2^{\text {nd }}-O r d e r$ ODE

Our ODE looks a bit daunting. But, remember it is just a $2^{\text {nd }}$ order albeit with non-constant coefficients.

$$
\left\{\frac{d^{2}}{d z^{2}}-\frac{1}{H} \frac{d}{d z}+\left[\frac{1}{H^{2}} \frac{d H}{d z}+\frac{\omega^{2}}{c^{2}}+k_{\mathrm{h}}^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right]\right\}\left(c^{2} \chi\right)=0
$$

It looks less intimidating if we just realize that most of the complication is in the coefficient for the 0-order term.

$$
\begin{aligned}
&\left\{\frac{d^{2}}{d z^{2}}-\frac{1}{H} \frac{d}{d z}+A(z)\right\}\left(c^{2} \chi\right)=0 \\
& A(z) \equiv \frac{1}{H^{2}} \frac{d H}{d z}+\frac{\omega^{2}}{c^{2}}+k_{\mathrm{h}}^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)
\end{aligned}
$$

Standard Form

We are used to seeing wave equations of the form

$$
\frac{d^{2} \psi}{d z^{2}}+K^{2} \psi=0 \quad \text { Helmholtz Equation }
$$

We can convert our ODE into this form by a change of variable. Let

$$
c^{2} \chi=f(z) \psi(z)
$$

Insert this expression into our ODE.

$$
\frac{d^{2} \psi}{d z^{2}}+\underbrace{\left(\frac{2}{f} \frac{d f}{d z}-\frac{1}{H}\right)}_{\begin{array}{c}
\text { Choose } f \text { such that } \\
\text { this term vanishes }
\end{array}} \frac{d \psi}{d z}+\left[\frac{1}{f} \frac{d^{2} f}{d z^{2}}-\frac{1}{f H} \frac{d f}{d z}+A(z)\right] \psi=0
$$

Convert to a Helmholtz Equation

Choose the function f such that the coefficient in front of the first derivative is identically zero.

$$
\frac{2}{f} \frac{d f}{d z}-\frac{1}{H}=0 \Longleftrightarrow \frac{1}{f} \frac{d f}{d z}=-\frac{1}{2}\left(\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d z}\right) \Longrightarrow f=\rho_{0}{ }^{-1 / 2}
$$

Then, our ODE takes on the desired form

$$
\begin{array}{cl}
& \frac{d^{2} \psi}{d z^{2}}+k_{z}^{2} \psi=0 \\
\text { with } & k_{z}^{2}(z)=\frac{1}{f} \frac{d^{2} f}{d z^{2}}-\frac{1}{f H} \frac{d f}{d z}+A(z)
\end{array}
$$

Wave Equation

Now insert the solution we found for $f(z)$ to find

$$
\chi=\left(c^{2} \rho_{0}^{1 / 2}\right)^{-1} \psi(z) e^{i \vec{k}_{\mathrm{h}} \cdot \vec{x}} e^{-i \omega t}
$$

$$
\frac{d^{2} \psi}{d z^{2}}+k_{z}^{2}(z) \psi=0
$$

Wave Equation (Helmholtz)
$k_{z}^{2}(z)=\frac{\omega^{2}-\omega_{\mathrm{c}}^{2}(z)}{c^{2}(z)}+k_{\mathrm{h}}^{2}\left(\frac{N^{2}(z)}{\omega^{2}}-1\right)$
Local Vertical Wavenumber

Buoyancy Frequency
Acoustic Cutoff Frequency
$N^{2}=g\left(\frac{1}{H}-\frac{g}{c^{2}}\right)$
$\omega_{\mathrm{c}}^{2} \equiv \frac{c^{2}}{4 H^{2}}\left(1-2 \frac{d H}{d z}\right)$

Local Dispersion Relationship

$$
k_{z}^{2}(z)=\frac{\omega^{2}-\omega_{\mathrm{c}}^{2}(z)}{c^{2}(z)}+k_{\mathrm{h}}^{2}\left(\frac{N^{2}(z)}{\omega^{2}}-1\right)
$$

This is a dispersion relation that describes the local value of the vertical wavenumber. In general, the vertical wavenumber
(or wavelength) will change with height in the atmosphere.

Acoustic-Gravity

Further this relation describes both acoustic waves and
internal gravity waves. In fact, the two are coupled into a single type of wave called an acoustic-gravity wave.

Two Restoring Forces

Acoustic-gravity waves have two restoring forces (pressure and buoyancy) that can work in concert or in opposition depending on the frequency and wavenumber.

Stars are Spheres!

If one is careful, the entire calculation can be performed in spherical coordinates. One finds that the same equation holds, with the radius replacing the height coordinate

$$
\begin{gathered}
\frac{d^{2} \psi}{d r^{2}}+k_{r}^{2}(r) \psi=0 \\
k_{r}^{2}(r)=\frac{\omega^{2}-\omega_{\mathrm{c}}^{2}(r)}{c^{2}(r)}+k_{\mathrm{h}}^{2}(r)\left(\frac{N^{2}(r)}{\omega^{2}}-1\right)
\end{gathered}
$$

Buoyancy Frequency Acoustic Cutoff Frequency
Note:

The only differences are that the horizontal wavenumber must take into
The characteristic frequencies have sphericity corrections

$$
\mathcal{H}^{-1}=H^{-1}+H_{g}^{-1}+H_{f}^{-1}+3 r^{-1}
$$

$$
h^{-1}=H_{g}^{-1}+2 r^{-1}
$$ account the spherical geometry

$$
k_{\mathrm{h}}^{2}(r)=\frac{l(l+1)}{r^{2}}
$$

and

Sphericity Corrections

$$
N^{2}=g\left(\frac{1}{\mathcal{H}}-\frac{g}{c^{2}}-\frac{2}{h}\right) \quad \omega_{\mathrm{c}}^{2}=\frac{c^{2}}{4 \mathcal{H}^{2}}\left(1-2 \frac{d \mathcal{H}}{d r}\right)-\frac{g}{h}
$$

A whole bunch of scale heights

Except for the horizontal wavenumber corrections, none of the corrections ' are important except near the very center of I the star.
$H_{g}^{-1}=-\frac{1}{g} \frac{d g}{d r}$
I The corrections depend I weakly on the frequency $l_{\text {I }}^{\text {i weakly on the frequen }}$ i and on the harmonic $\int \begin{aligned} & \text { and on the } \\ & \text { I degree } l \text {. } \\ & \text { a }\end{aligned}$

Disk 2 Bonus Features

Derivation of the Wave Equation

This additional material is for those of you who are mathematically minded and are unsatisfied when an instructor says, "It can be shown ..."

I will provide a complete derivation for the wave equation for acousticgravity waves in a plane-parallel atmosphere with general stratification (a general temperature profile).

Fluctuation Equations

We have reduced the original four equations to three. We have also written the vertical momentum equation such that gravitation and a portion of the pressure force have been combined into buoyancy.

Adiabaticity
(1) $\frac{\partial P_{1}}{\partial t}=\rho_{0}\left(g v_{z}-c^{2} \vec{\nabla} \cdot \vec{v}\right)$

Horizontal Momentum
(2) $\frac{\partial^{2} \vec{v}_{\mathrm{h}}}{\partial t^{2}}=-\vec{\nabla}_{\mathrm{h}} \frac{\partial}{\partial t}\left(\frac{P_{1}}{\rho_{0}}\right)$

Vertical Momentum
(3) $\frac{\partial^{2} v_{z}}{\partial t^{2}}=-\frac{\partial}{\partial z} \frac{\partial}{\partial t}\left(\frac{P_{1}}{\rho_{0}}\right)-\frac{N^{2} c^{2}}{g} \vec{\nabla} \cdot \vec{v}$

Our goal at this point is to reduce these down to a single equation. Note, that the buoyancy force and the pressure force both depend on the dilation.

Eliminate the Pressure Fluctuation

Insert the energy equation (1) into the momentum equations (2) and (3) to eliminate the pressure fluctuation.
$\frac{\partial^{2} \vec{v}_{\mathrm{h}}}{\partial t^{2}}=-\vec{\nabla}_{\mathrm{h}} \frac{\partial}{\partial t}\left(\frac{P}{\bar{\rho}}\right) \quad \frac{\partial}{\partial t}\left(\frac{P}{\bar{\rho}}\right)=g w-c^{2} \vec{\nabla} \cdot \vec{v}$

$$
\frac{\partial^{2} \vec{v}_{\mathrm{h}}}{\partial t^{2}}=-\vec{\nabla}_{\mathrm{h}}\left(g w-c^{2} \vec{\nabla} \cdot \vec{v}\right)
$$

(4)

$$
\frac{\partial^{2} w}{\partial t^{2}}=-\frac{\partial}{\partial z} \frac{\partial}{\partial t}\left(\frac{P}{\bar{\rho}}\right)-\frac{N^{2} c^{2}}{g} \vec{\nabla} \cdot \vec{v}
$$

Note:
Equations (4) and (5) form I a set of coupled equations which are (in total) second
order. ${ }^{1}$ order
I The dilation plays a major IThe dilation plays a major
I role in these equations role in these equations
I (in both the pressure and lin both the pressure
, we will derive
I We will derive
I in the dilation.

Plane Wave Solution

Since the atmosphere is steady and horizontally invariant we can assume a plane wave solution

$$
\begin{array}{ll}
v_{z}(\vec{x}, t)=v_{z}(z) e^{i \vec{k}_{\mathrm{h}} \cdot \vec{x}} e^{-i \omega t} & \text { Horizontal Wavenumber } \\
& \vec{k}_{\mathrm{h}}=k_{x} \hat{x}+k_{y} \hat{y}
\end{array}
$$

$$
(4) \rightarrow \frac{\partial^{2} \vec{v}_{\mathrm{h}}}{\partial t^{2}}=-\vec{\nabla}_{\mathrm{h}}\left(g v_{z}-c^{2} \vec{\nabla} \cdot \vec{v}\right)
$$

$$
-\omega^{2} \vec{v}_{\mathrm{h}}=-i \vec{k}_{\mathrm{h}}\left(g v_{z}-c^{2} \chi\right)
$$

Dilation $\chi \equiv \vec{\nabla} \cdot \vec{v}$

$$
(5) \rightarrow \frac{\partial^{2} v_{z}}{\partial t^{2}}=-g \frac{\partial v_{z}}{\partial z}+\left(\frac{\partial}{\partial z}-\frac{N^{2}}{g}\right)\left(c^{2} \vec{\nabla} \cdot \vec{v}\right) \quad \chi=i \vec{k}_{\mathrm{h}} \cdot \vec{v}_{\mathrm{h}}+\frac{d v_{z}}{d z}
$$

Find an equation for the dilation

Insert equations (6) and (7) into the definition for the divergence
$(6) \rightarrow-\omega^{2} \vec{v}_{\mathrm{h}}=i \vec{k}_{\mathrm{h}}\left(c^{2} \chi-g v_{z}\right) \quad$ Horizontal Momentum Equation
(7) $\rightarrow-\omega^{2} v_{z}=-g \frac{d v_{z}}{d z}+\left(\frac{d}{d z}-\frac{N^{2}}{g}\right)\left(c^{2} \chi\right)$ Vertical Momentum Equation

From (6) $\quad i \overrightarrow{\mathrm{~h}}_{\mathrm{h}} \cdot \vec{v}_{\mathrm{h}}=\frac{k_{\mathrm{h}}^{2}}{\omega^{2}}\left(c^{2} \chi-g v_{z}\right)$
$\chi=i \vec{k}_{\mathrm{h}} \cdot \vec{v}_{\mathrm{h}}+\frac{d v_{z}}{d z} \longrightarrow \chi=\frac{k_{\mathrm{h}}^{2}}{\omega^{2}}\left(c^{2} \chi-g v_{z}\right)+\frac{d v_{z}}{d z}$ (8)
Equations (7) and (8) are two independent, but coupled, equations in the variables v_{z} and χ. We can eliminate v_{z} by cross differentiation.

$$
\begin{aligned}
& \text { Cross Differentiation } \\
& \text { (7) } \rightarrow-\omega^{2} v_{z}=-g \frac{d v_{z}}{d z}+\left(\frac{d}{d z}-\frac{N^{2}}{g}\right)\left(c^{2} \chi\right) \\
& \Rightarrow\left(g \frac{d}{d z}-\omega^{2}\right) v_{z}-\left(\frac{d}{d z}-\frac{N^{2}}{g}\right)\left(c^{2} \chi\right)=0 \quad \mathcal{L}_{1} \equiv\left(g \frac{d}{d z}-\omega^{2}\right) \\
& \mathcal{L}_{1} v_{z}-\mathcal{D}_{1}\left(c^{2} \chi\right)=0 \\
& \text { (8) } \rightarrow \chi=\frac{k_{\mathrm{h}}^{2}}{\omega^{2}}\left(c^{2} \chi-g v_{z}\right)+\frac{d v_{z}}{d z} \\
& \Rightarrow\left(\frac{d}{d z}-\frac{g k_{\mathrm{h}}^{2}}{\omega^{2}}\right) v_{z}-\left(\frac{\omega^{2}-k_{\mathrm{h}}^{2} c^{2}}{\omega^{2}}\right) \chi=0 \\
& \mathcal{L}_{2} v_{z}-\mathcal{D}_{2}\left(c^{2} \chi\right)=0 \\
& \mathcal{D}_{1} \equiv\left(\frac{d}{d z}-\frac{N^{2}}{g}\right) \\
& \mathcal{L}_{2} \equiv\left(\frac{d}{d z}-\frac{g k_{\mathrm{h}}^{2}}{\omega^{2}}\right) \\
& \mathcal{D}_{2} \equiv\left(\frac{\omega^{2}-k_{\mathrm{h}}^{2} c^{2}}{\omega^{2} c^{2}}\right)_{58}
\end{aligned}
$$

Cross Differentiate and Subtract

$\begin{aligned} & \mathcal{L}_{1}\left[\mathcal{L}_{2} v_{z}-\mathcal{D}_{2}\left(c^{2} \chi\right)\right]=0 \\ - & \mathcal{L}_{2}\left[\mathcal{L}_{1} v_{z}-\mathcal{D}_{1}\left(c^{2} \chi\right)\right]=0 \end{aligned}$	Note: Commutation! $\mathcal{L}_{1} \mathcal{L}_{2}=\mathcal{L}_{2} \mathcal{L}_{1}$
$[\underbrace{\left.\mathcal{L}_{1} \mathcal{L}_{2}-\mathcal{L}_{2} \mathcal{L}_{1}\right]}_{0} v_{z}-\left[\mathcal{L}_{1} \mathcal{D}_{2}-\mathcal{L}_{2} \mathcal{D}_{1}\right]\left(c^{2} \chi\right)=0$ Simplify the terms to find a single equation for $c^{2} \chi$.	Voila: We have a i single ODE that I describes the I dilation.
$\left\{\frac{d^{2}}{d z^{2}}-\frac{1}{H} \frac{d}{d z}+\frac{1}{H^{2}} \frac{d H}{d z}+\frac{\omega^{2}}{c^{2}}+k_{\mathrm{h}}^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right\}\left(c^{2} \chi\right)=0$	(9)

Synopsis

Therefore, we have a solution for the dilation
that is a plane wave in the horizontal directions, $\quad \chi(\vec{x}, t)=\chi(z) e^{i \vec{k}_{\mathrm{h}} \cdot \vec{x}} e^{-i \omega t}$ and whose vertical behavior satisfies
$\left\{\frac{d^{2}}{d z^{2}}-\frac{1}{H} \frac{d}{d z}+\frac{1}{H^{2}} \frac{d H}{d z}+\frac{\omega^{2}}{c^{2}}+k_{\mathrm{h}}^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right\}\left(c^{2} \chi\right)=0$

All other properties can be derived from the dilation.

$$
v_{z}=-\frac{\omega^{2}}{\omega^{4}-g^{2} k_{\mathrm{h}}^{2}}\left[\frac{d}{d z}+\left(\frac{g k_{\mathrm{h}}^{2}}{\omega^{2}}-\frac{1}{H}\right)\right]\left(c^{2} \chi\right) \begin{aligned}
& \text { The vertical velocity can } \\
& \text { ibe obtained by eliminating } \\
& \text { iv } \\
& \text { dva } \\
& \text { and (8) from equations }(7)
\end{aligned}
$$

' and (8).
$\vec{v}_{\mathrm{h}}=\frac{i \vec{k}_{\mathrm{h}}}{\omega^{2}}\left(g v_{z}-c^{2} \chi\right) \quad P_{1}=\frac{i \rho_{0}}{\omega}\left(g v_{z}-c^{2} \chi\right) \quad \rho_{1}=\frac{i \rho_{0}}{\omega}\left(\frac{v_{z}}{H}-\chi\right)$

