

Polarization of solar flares at 45 and 90 GHz

Douglas F. Silva¹, Paulo Simões², Adriana Valio¹ (aka A. Silva) 1- CRAAM – Mackenzie University, Brazil 2- University of Glasgow, UK

Chromo AID – March 15-18, 2016 – Boulder, CO (USA)

Flare radio emission and polarization

- Flare emission at mm due to gyrosynchrotron from accelerated electrons
- * Wave propagation mode
 - i. Ordinary
 - ii. Extraordinary:
 - i. RCP: N (+) B
 - ii. LCP: S (-) B
- Strongly affected by the propagation conditions
- Observed circular
 polarization at 45 and 90
 GHz with opposite sign

Asymmetric magnetic loop

Kundu & Vlahos (1979): Relation between total flux and polarized flux depends on the ratio of the magnetic intensity at loop legs

Determine the magnetic field configuration and energy distribution of accelerated particles

* Radio observation of three solar flares:

- i. Radio spectra;
- ii. Polarization degree at 45 and 90 GHz.
- * Complementary observations at other wavelengths:
 - i. X Ray;
 - ii. UV images;
 - iii. Magnetograms.
- * Qualitative comparison with numerical simulations of radio emission in flaring 3D magnetic loops (Simões 2009).

Radio observation

* RSTN: 2.7, 5, 8.8, and 15.4 GHz

- * POEMAS (POlarized Emission of Millimeter Activity on the Sun): 45 and 90 GHz
- * SST (Submillimeter Solar Telescope): 212 GHz

El Leoncito Observatory (CASLEO) in the Argetina Andes

POEMAS

- Novelty: circular polarization measurements
- * Frequencies: 45 and 90 GHz
- * Whole solar disk (HPBW 1.5°)
- * Time resolution: 10 ms
- * Sensibility: 2 3 K
- * CASLEO, Argentina
- * Data: Nov 2011 Dec 2013

3 Solar flares

Flare	GOES class	Location	Pol at 45 GHz	Pol at 90 GHz
17 Feb 2013	M 1.9	N12E17	-8 %	+9%
13 May 2013	X 2.8	N08E89	+7%	-10%
05 Nov 2013	M 1.0	S12E47	+35%	-10%

Numerical Simulation (Simões 2009)

- * Gyrosynchrotron emission Ramaty (1969)
 and Ramaty et al. (1994).
- Injection of accelerated electrons into the magnetic loop
- * Energy distribution of accelerated electrons
- * Radiative transfer
- * Results for flaring source:
 - Radio spectra
 - Emission maps with total flux and polarization for
 - several radio frequencies

Numerical simulation INPUTS

* Magnetic loop

- * Magnetic field intensity along the loop
- * Length: 1 3 x 10⁹ cm
- * Position (longitude, latitude): location of flare in UV images
- * Azimuth (magnetograma): magnetic field
- * Inclination: 0°
- * Ambient thermal electrons:
 - * Density: 1 x 10¹⁰ cm⁻³
 - * Temperature: 10 MK
- * Non thermal electrons:
 - * Spectral index
 - * Density: 5 x 10⁷ cm⁻³
 - * Energy cutoffs: 10 keV 20 MeV

Flare – 17 Feb 2013 (M 1.9)

Radio spectra

UV (171 A) and Magnetogram

Simulation results

90GHz

10

GHz

-355 -350 -345 -340 -335 X ((arcsecs)) *

100

 Asymmetric magnetic field: -3100 G in one footpoint and 3800 G on the other.

- Position: Lat 18°,
 Long -22°
- * Angle wrt solar equator: 5°

Flare – 13 May 2013 (X 2.8)

Radio spectra

UV (171 A) and Magnetogram

Simulation results

 Asymmetric magnetic field:
 3200 G in one footpoint and
 -3420 G on the other.

- * Position: Lat 15°, Long -80°
- Angle wrt solar
 equator: 70°

Flare – 5 Nov 2013 (M 1.0)

Radio spectra

RCP and LCP

UV (171 A) and Magnetogram

SDO AIA_3 171 5-Nov-2013 18:09:35.340 UT

Simulation results

 * Asymmetric magnetic field: -4500 G in one footpoint and 3000 G on the other.
 * Position: Lat -15°, Long -47°

Angle wrt solar equator: -60°

100

Summary

Parameter	17 Feb 2013		13 May 2013		5 Nov 2013	
	Obs	Model	Obs	Model	Obs	Model
Magnetic field	-1500 and 1400 G	-3100 and 3800 G	-1300 and 1200 G	3200 and – 3480 G	-1300 and 1200 G	3000 and -4500 G
Latitude & Longitude	12°,-17°	18°,-22°	8°,-89°	15°,-80°	-12°,-47°	-15°,47°
Pol 45 GHz	- 0.08	-0.03	+ 0.07	+0.096	+ 0.35	+ 0.11
Pol 90 GHz	+ 0.09	+ 0.027	- 0.10	-0.045	- 0.18	- 0.39
Spectral index	2-3	3.5	2 - 3.4	3.5	1.8 – 3.5	3.5

Conclusions

- * Opposite sign of polarization at 45 and 90 GHz due to asymmetric magnetic loop
- * Sources at different loop legs

Thank you!

Piled Higher and Deeper by Jorge Cham

www.phdcomics.com

title: "Look productive" - originally published 3/11/2016

IAUSymp 328: Living around active stars

* October 17 - 21, 2016
* Maresias Beach Hotel
* Maresias, SP, Brazil

* Abstract submission & registration:
16 March 2016 (Today!)
* www.sab-astro.org.br/ IAUS328