

Stokes Inversion via Principal Component Analysis

R. Casini HAO-NCAR

NLTE on the Sun

- temperature gradients in the stratified atmosphere cause anisotropic irradiation of the atmospheric layers
- → atomic polarization (i.e., population imbalance and quantum coherence among magnetic sub-levels)
- density gradients drive the thermalization of the atomic populations
- → competing effects of anisotropic irradiation and isotropic collisions

Scattering Polarization (semi-classical view)

e.g., Rayleigh scattering

Scattering Polarization (semi-classical view)

equivalent description in spherical basis

NLTE on the Sun

- photosphere: radiation anisotropy is small; collision isotropy is high; collisional rates are large
 - → atomic polarization is typically negligible (with some notable exceptions)
- chromosphere: radiation anisotropy may be large (mostly dependent on CLV); collision isotropy is high; collisional rates decrease quickly with height
 - → atomic polarization is important
- corona: radiation anisotropy is dominant (from both CLV and height); collision isotropy starts to break down; collisional rates are low
 - → atomic polarization is dominant

NLTE on the Sun

"self-consistency" loop (Landi Degl'Innocenti & Landolfi 2004)

Stokes Inversion via Pattern Recognition

the NLTE "inverse" problem is built upon a complex and time-consuming forward problem

→ inversion strategy: pattern recognition techniques
Principal Component Analysis (PCA)

Stokes Inversion via Pattern Recognition

the NLTE "inverse" problem is built upon a complex and time-consuming forward problem

→ inversion strategy: pattern recognition techniques
Principal Component Analysis (PCA)

Procedure

- determine a "universal" basis of Stokes eigenprofiles (by some optimized sampling of parameter space)
- → projection coefficients define a "dual" Stokes space
- build a database of Stokes profiles that is "uniformely" dense in this dual space (by "filtered" Monte Carlo)
- project observations over the eigenbasis
- match observations to database entries (e.g., minimize Euclidean distance in the dual space)

Principal Component Analysis Single-Line

He I λ1083 nm

on-disk (20°≤9≤30°)

 $h \leq 0.06 R_{\odot}$

 $B \le 2000 \, \text{G}$

 (θ_{B}, ϕ_{B}) in 4π srad

 $10^4 \text{ K} \le T \le 2 \times 10^4 \text{ K}$

 $0.2 \le \tau \le 1.4$

Principal Component Analysis Single-Line

Average over parameter space

on-disk

Principal Component Analysis Multi-Line

PCA: General Considerations

Pros

- fast (searches best fit in a pre-built database of models)
- stable (always finds best fit: no issues with local minima)
- model independent (universal search/minimization algorithm)

Cons

- no solution refinement (errors fixed by the density of the database)
- database can become unmanageably large (dimensionality of parameter space, parameter ranges, target error; partial mitigation from optimally sampling the parameter space, indexing)

PCA: Solution Refinement

simple approach to solution refinement

- "0"-solution and initial error box are determined by the PCA inversion
- N-step refinement by search of the error perimeter (e.g., halving the length at each step)

Issues

- possible trapping in local minima (if initial error box is too large)
- → need PCA database sufficiently dense for initial inversion
- systematic search of error perimeter can be very slow (depends on number of parameters in forward model)
- → need better strategy (e.g., Levenberg-Marquardt minimization)

He I λ1083 nm Martínez Pillet, July 5, 2005 © VTT + IAC TIP II

 $\tau = 0.958 \pm 0.035$

13534.70 ± 521.18 K

 $\delta = 0.736$

 $\theta = 27.04 \pm 0.76$ h = 0.0338 ± 0.0038 R $B = 733.05 \pm 22.96 G$

 $\theta_{\rm B} = 104.89 \pm 0.99$

 $\phi_{\rm B} = -74.92 \pm 0.99$

 $\Theta_{B} = 96.58 \pm 0.49$ $\Phi_{D} = -69.93 \pm 23.87$

Kuckein et al. 2009

Magnetic map of an A-R filament

Magnetic map of a quiescent prominence

He I λ 587.6 nm (D₃) Casini et al., May 25, 2002 © DST + HAO ASP

Fig. 6.—Same as Fig. 2, but for the point (15, 26) in the maps, corresponding to a field strength of 87 G ($\Theta_B = 56^{\circ}$). Because of the larger field strength, the antisymmetric shape of Stokes V is now evident.

Casini et al. 2003

Figure 2. Multi-line inversion of simultaneous and cospatial spectropolarimetric observations of He I 10830 (left) and D₃ (right) in a quiescent prominence, taken with THéMIS on 2007 June 29. The inverted vector magnetic field for this example is $B = 3.0 \,\text{G}$, $\vartheta_B = 57.8$, and $\varphi_B = 42.7$.

He I λ 1083 nm + λ 587.6 nm Paletou et al., 29 June, 2007 @ THéMIS

PCA database:

150000 models (on the same parameter space of slide #9)

Stokes *U* and *V* of He I 1083 not quite a good fit, likely due to slightly different plasma properties for the two lines

Casini et al. 2009

Ca II 854.2 Inversion Test

"prominence" case

Parameter space

 $0.01 R_{\odot} \le h \le 0.06 R_{\odot}$ off-limb (85° $\le 9 \le 95$ °) $0.2 G \le B \le 200 G$ ($9_{B}, \varphi_{B}$) in 4π srad $10^{4} K \le T \le 2 \times 10^{4} K$ $0.5 \le \tau \le 1.5$

PCA database:

150000 models (on the same parameter space)

Synthetic "map":

2700 random models $(\sim 52 \times 52 \text{ arcsec}^2 \text{ map})$

Inversion time:

~150 s (excluding readout of the PCA database) on one core (Intel Core2 T7600 2.33 GHz)

Ca II 854.2 Inversion Test

Spectro-polarimeter (ViSP)

Lyot filter (ChroMag) FWHM = 0.2 Å, 0.1 Å samplingR = 180000 (0.048 Å sampling)

Indexing of PCA Databases

MAIN IDEA

low, dominant orders of the PCA eigenprofiles capture the essential physics of line formation (higher orders are more susceptible to noise and model errors)

⇒ for each model realization, the *values of the low-order PCA projections* coarsely locate the model in the parameter space

STRATEGY

to study the *value distribution* of low-order PCA projections in order to partition the inversion database into *indexed, disjoint* classes

⇒ search *only one pertinent class per map point*, rather than the entire database, to speed up the database search

Distribution of PCA Projections He I 1083 nm, on disk

Indexing of PCA Databases

TESTED IMPLEMENTATION

rely only on **sign** of PCA projection (**binary partitioning**)

$$N_{
m classes} = 2^{4n}$$

where n is the number of orders used for the partition \Rightarrow each class is identified by a *unique binary number* (a

"bar code")

We tested such partitioning on a database of 750,000 Stokes vectors for the on-disk He I 1083 nm, and used it to invert VTT/TIP II observations by B. Lites of an A-R filament (7120 map points; single-core process)

PCA Indexed Inversion

Difference Maps

PCA Indexed Inversion

EXAMPLE

- 10M model database
- 2 indexing orders
- full disk, 1 arcsec spatial resolution (~ 2.9M points)

⇒ 1 full inversion every ~ 9 hrs (single-core process; 2012 estimate!)

Indexing of PCA Databases

POSSIBLE DEVELOPMENT

Use both *median and variance* of PCA projection distributions to create a *ternary partition* of the inversion database

$$N_{
m classes}=3^{4n}$$

where n is the number of orders used for the partition $\Rightarrow \sim 80 \times \text{increase}$ in inversion speed with just one indexing order

Questions or Ideas?