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• temperature gradients in the stratified atmosphere 
cause anisotropic irradiation of the atmospheric 
layers

➝ atomic polarization (i.e., population imbalance and 
quantum coherence among magnetic sub-levels)

• density gradients drive the thermalization of the 
atomic populations

➝ competing effects of anisotropic irradiation and 
isotropic collisions

NLTE on the Sun



e.g., Rayleigh scattering
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  equivalent description in spherical basis
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● photosphere: radiation anisotropy is small; collision 
isotropy is high; collisional rates are large

➝ atomic polarization is typically negligible (with 
some notable exceptions)

● chromosphere: radiation anisotropy may be large 
(mostly dependent on CLV); collision isotropy is high; 
collisional rates decrease quickly with height

➝ atomic polarization is important
● corona: radiation anisotropy is dominant (from both 

CLV and height); collision isotropy starts to break down; 
collisional rates are low

➝ atomic polarization is dominant

NLTE on the Sun



forward problem (local)

PRT problem (non-local)

“self-consistency” loop
(Landi Degl’Innocenti & Landolfi 2004)

NLTE on the Sun



  

the NLTE “inverse” problem  is built upon a complex 
and time-consuming forward problem

➝ inversion strategy: pattern recognition techniques  
Principal Component Analysis  (PCA)

Stokes Inversion via Pattern Recognition
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Procedure
● determine a  “universal” basis of Stokes eigenprofiles        

(by some optimized sampling of parameter space)
➝ projection coefficients define a “dual” Stokes space
● build a database of Stokes profiles that is “uniformely” 

dense in this dual space (by “filtered” Monte Carlo)
● project observations over the eigenbasis
● match observations to database entries (e.g., minimize 

Euclidean distance in the dual space)

Stokes Inversion via Pattern Recognition



  

Example
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Principal Component Analysis
Multi-Line

Example

He I λ1083 nm

+ λ587.6 nm
off-limb 
(85° 95 °)

0.01 R⊙h  0.06  R⊙

B  200 G

(
B
,

B
) in 4  srad

104 KT 1.5 104 K

0.5 1.5 ( λ1083)



  

Pros
● fast (searches best fit in a pre-built database of models)
● stable (always finds best fit: no issues with local minima)
● model independent (universal search/minimization 
algorithm)

Cons
● no solution refinement (errors fixed by the density of the 
database)

● database can become unmanageably large (dimensionality 
of parameter space, parameter ranges, target error; partial 
mitigation from optimally sampling the parameter space, 
indexing)

PCA: General Considerations



  

simple approach to
solution refinement

“0”-solution and initial error box are 
determined by the PCA inversion

N-step refinement by search of the 
error perimeter (e.g., halving the 
length at each step)

Issues
possible trapping in local minima         
(if initial error box is too large) 
➝ need PCA database sufficiently dense 

for initial inversion
systematic search of error perimeter 
can be very slow (depends on number 
of parameters in forward model)
➝ need better strategy (e.g., 

Levenberg-Marquardt minimization)

PCA: Solution Refinement



  

Magnetic map of an A-R filament
He I λ1083 nm

Martínez Pillet, July 5, 2005
@ VTT + IAC TIP II

Kuckein et al. 2009



  

Magnetic map of a
quiescent prominence He I λ587.6 nm (D3)

Casini et al., May 25, 2002
@ DST + HAO ASP

Casini et al. 2003



  

He I λ1083 nm + λ587.6 nm
Paletou et al., 29 June, 2007

@ THéMIS

Stokes U and V of He I 1083 
not quite a good fit, likely due 
to slightly different plasma 
properties for the two lines

PCA database:
150000 models (on the same 
parameter space of slide #9)

Casini et al. 2009



  

Ca II 854.2 Inversion Test

Parameter space

0.01 R⊙h 0.06  R⊙

off-limb (85° 95 °)
0.2 GB 200 G

(
B
,

B
) in 4  srad

104 KT2104 K
0.5 1.5

PCA database:
150000 models (on the same 
parameter space)

Synthetic “map”:
2700 random models
(~5252 arcsec2 map)

Inversion time:
~150 s (excluding readout of 
the PCA database) on one core 
(Intel Core2 T7600 2.33 GHz)

“prominence” case



  

Ca II 854.2 Inversion Test

No noise No noise

S/N = 103 S/N = 103

Spectro-polarimeter (ViSP)
R = 180000 (0.048 Å sampling)

Lyot filter (ChroMag)
FWHM = 0.2 Å, 0.1 Å sampling



  

Indexing of PCA Databases

MAIN IDEA
low, dominant orders of the PCA eigenprofiles capture the 
essential physics of line formation (higher orders are more 
susceptible to noise and model errors)
⇨ for each model realization, the values of the low-order 
PCA projections coarsely locate the model in the parameter 
space

STRATEGY
to study the value distribution of low-order PCA projections in 
order to partition the inversion database into indexed, disjoint 
classes
⇨ search only one pertinent class per map point, rather 
than the entire database, to speed up the database search



  

Distribution of PCA Projections
He I 1083 nm, on disk

1st order

2nd order

3rd order



  

TESTED IMPLEMENTATION
rely only on sign of PCA projection (binary partitioning) 

Nclasses = 24n

where n is the number of orders used for the partition

⇨ each class is identified by a unique binary number (a 
“bar code”)

We tested such partitioning on a database of 750,000 
Stokes vectors for the on-disk He I 1083 nm, and used it to 
invert VTT/TIP II observations by B. Lites of an A-R filament 
(7120 map points; single-core process)

Indexing of PCA Databases



  
No indexing

(full database; 730 s)
1st order indexing
(16 classes; 50 s)

2nd order indexing
(256 classes; 6 s)

 PCA Indexed Inversion



  
1st order indexing
(16 classes; 50 s)

2nd order indexing
(256 classes; 6 s)

Difference Maps



  

EXAMPLE
● 10M model database
● 2 indexing orders
● full disk, 1 arcsec spatial resolution (~ 2.9M points)

⇨ 1 full inversion every ~ 9 hrs (single-core process; 2012 
estimate!)

 PCA Indexed Inversion



  

POSSIBLE DEVELOPMENT
Use both median and variance of PCA projection 
distributions to create a ternary partition of the inversion 
database 

Nclasses = 34n

where n is the number of orders used for the partition

⇨ ~ 80× increase in inversion speed with just one indexing 
order

Indexing of PCA Databases



  

Questions or Ideas?
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