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| Scope of this lecture

o Processes of magnetic field generation and destruction in
turbulent plasma flows

o Introduction to general concepts of dynamo theory (this is not
a lecture about the solar dynamo!)

o Outline

o Intro: Magnetic fields in the Universe
MHD, induction equation
Some general remarks and definitions regarding dynamos

Small scale dynamos
Large scale dynamos (mean field theory)

o Kinematic theory
o Characterization of possible dynamos
@ Non-kinematic effects

o Concluding remarks

| Magnetic fields in the Universe

o Earth
o Field strength ~ 0.5G
o Magnetic field present for ~ 3.5 - 10° years, much longer than
Ohmic decay time (~ 10* years)
o Strong variability on shorter time scales (10° years)
o Mercury, Ganymede, (lo), Jupiter, Saturn, Uranus, Neptune
have large scale fields
e Sun
o Magnetic fields from smallest observable scales to size of sun
e 22 year cycle of large scale field
o Ohmic decay time ~ 10° years (in absence of turbulence)
o Other stars
o Stars with outer convection zone: similar to sun
o Stars with outer radiation zone: primordial fields, field
generation in convective core
o Galaxies
o Field strength ~ G
o Field structure coupled to observed matter distribution

Mostly dipolar field structure (currently)

International Geomagnetic Reference Field Model -~ Epoch 2005
Main Field Vertical Intensity (Z)

Credit: NOAA NGDC

Short-term variation on scales of hundreds of years

o Independent movement
of the poles

@ South and North pole are
in general not opposite
to each other (higher
multipoles)
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o Movements up to 40
km/year (~ 1 mm/sec)

Long-term variation on scales of thousands to millions of years
(deduced from volcanic rocks and sediments)
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@ Mostly random
changes of polarity
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o A given polarity for
~ 100,000 years

o Fast switches ~ 1000
years

o
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o Strong variation of
= dipole moment and
‘ - failed reversals

o/

Givert
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| Solar Magnetism | Solar Magnetism

o Up to 4kG (sunspot
umbra) field in solar
photosphere

o Structured over the full
range of observable scales
from 100 km to size of Sun

o Large scale field shows
symmetries with respect to
equator

Full disk magnetogram SDO/HMI
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o Large scale field exhibits ~ 22 year magnetic cycle
o 11 year cycle present in large scale flow variations (meridional
flow and differential rotation)

| Solar Magnetism | Galactic magnetism

Yearly Averaged Sunspot Numbers 1610-2010
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o Magnetic field derived
from polarization of radio
emission
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@ Cycle interrupted by grand minima with duration of up to 100
years

o Similar overall activity has been present for past ~ 100,000
years (tree ring and ice core records of cosmogenic isotopes:
C-14 and Be-10).

Magnetic field follows
spiral structure to some
extent

@ Optically thin dynamo -
Dynamo region can be
observed!

M51, Credit: MPI for Radioastronomy, Germany

@ Objects from size of a planet to galaxy clusters have large
scale (~ size of object) magnetic fields
o Physical properties of object differ substantially

e 1,000 km to 100,000 LJ

o liquid iron to partially ionized plasma

o spherical to disk-shaped

o varying influence of rotation (but all of them are rotating)
o Ry ~103...10%

o ...

@ |s there a common origin of magnetic field in these objects?

@ Can we understand this on basis of MHD?

| Magnetic fields in the Universe

The basic framework for understanding the dynamics of a
magnetized fluid are the MHD equations. In their most simple
form they are applicable under the following conditions:
o Validity of continuum approximation (enough particles to
define averages)
o Strong collisional coupling: validity of single fluid
approximations, isotropic (scalar) gas pressure
o Non-relativistic motions, low frequencies, high electrical
conductivity
They combine a fluid description in terms of the Navier-Stokes
equations with the non-relativistic Maxwell equations as well as
Ohm's Law.




‘ Convective derivative ‘ Equation of continuity

Mass density changes along fluid trajectory if flow is compressible

Continuum approximation means that density (o), velocity (v) and (V-v+0)
internal energy (e) can be written a functions of space (x) and ; do o
time (t). Quantities can vary in time (along a fluid trajectory) by 9 ot +v-Vo=—0V-v

either having in-stationary fields (time variation at a fixed location)
or by having transport of a quantity in an inhomogeneous field
(variation in space), i.e.

Equivalent conservative formulation:

)
%2 L V. (ov)=0

ot
do _ lim o(x + vAt, t + At) — o(x, t) Change of mass in a fixed control volume Q is given by mass flux
dt At—0 At across boundary 0S2:
= i +v-V 9
ot ¢ eTT = [ 2Lav = / V- (ov)dV = / (ov)ndA

‘ Momentum equation ‘ Kinetic energy equation

Starting with Newton's law mdv/dt = F we get per volume:
With the identity (v - V)v = 7 — v x (V x v) follows:

dv v _
e = gawtg(v-v)v_f_ ~Vp+og + .V.T 542 2 i
Pressure / Buoyancy force Viscous force 57 + ov - V* =—-v-Vp+ov-: g+ vV . T
Using the equation of continuity: Using again the equation of continuity can derive a " conservative”
form:
v d(ov
o—+o(v-V)v = ('l‘) )+VV (ov)+(ov-V)v = 2oy
ot ot 9 (1 , i 5 _ _
FrAC1LM +V-|v Zevitp| - = pV-v+ov-g—7-Vv
We can derive the " conservative” form of the momentum equation: 5 Q

d(ov)
ot

where vv = v;vj denotes the dyadic product.

Here @, = 7 - Vv = 70k v; is the formal expression for the
viscous heating.

+ V- [ow + pl — 7] = og

‘ Internal energy and total energy equation ‘ Navier-Stokes Equations

First law of thermodynamics: dE + pdV = dW. With e = E/m AT T EET

and @ = V1 dW/dt we can write: do ~V - (ov)
ot
E _ B@ -Q v _
dt  odt eg; = —elv-Vv-Vp+og+V. T
With the equation of continuity and @ = Q, + V - (kV T) (k heat g% = —o(v-V)e—pV -v+V-(kVT)+Q,

conductivity) follows:
Conservative formulation (Exp = e + 30v?):

0

—(0e) + V- (vpe —kVT)=—pV -v+Q,
at Oo

24iV(ov) = 0
Combination with the kinetic energy equation yields: ot

9(ev)
ot +V - [ovv + pl — 7]

0
EEHD+V'[V(EHD+p)—v7’-—nVT] = pv-g

9 1 o8
% (ge-‘r 28v >+V~ [v (ge 4F Egv2 +p> — VT — nVT] =ov-g




‘ Navier-Stokes Equations

Viscous stress tensor 7

_ 1 Bv,- (’)vk
A =3 <8xk + ax,->
2@” </\ik - %6,—,(V . V>

TikNik 5

Tik =
Q) =

Equation of state (ideal gas)
p=(y—1)ee.

v and k: viscosity and thermal conductivity

‘ Maxwell Equations (relativistic)

Maxwell Equations
oB

VXE=—-———

A
V-E=—
£0 Jat

1 9E
V x B =poj+ =2 V-B=0

2ot
Transformation of the Lorentz vectors (ct, x) and (cA, j)

(v=vI=vZje )

vV-X
tl:'y(t7 2 ) x'=q(x—vt)

v-j
A’:v()\—7>

Transformation of the electro-magnetic field:
Ef=E B = B,

i'=1G=v))

E[=v(E+vxB), Bj_:'y(BJr%vxE)
€ i

‘ Maxwell Equations (non-relativistic)

Assumptions:
@ non-relativistic motions and slow evolutions
o high conductivity

— E < B, v\ < j,0E/0t < c? ugj

V'E:i VXE:—aj
€0 ot
V xB=pupj V-B=0

Simplified transformations (Galilei-transformation):

A=
E'=E+vxB B'=B

Equation of motion for drift velocity vy of electrons

ot Tei

Tei: collision time between electrons and ions

ne: electron density

ge: electron charge

me: electron mass

Pe: electron pressure

With the electric current: j = ne ge vy this gives the generalized
Ohm's law:

0
NeMe (ﬁ + ﬁ) = neqe(E + vg X B) — Vpe

oi 5 >
J_,_L: neqe[;‘.,.&jx B—EVpe
ot Tei me me Mme

Simplifications:
0 Teiwp K 1, w, = eB/me: Larmor frequency
@ neglect Vpe
o low frequencies (no plasma oscillations)

Simplified Ohm's law
j=0oE

with the plasma conductivity
_ 7—ei”qu
me

The Ohm’s law we derived so far is only valid in the co-moving
frame of the plasma. Under the assumption of non-relativistic
motions this transforms in the laboratory frame to

j=0(E+vxB)

‘ Induction equation

Using Ampere's law V x B = pigj yields for the electric field in the
laboratory frame

E:—v><B+LV><B
oo

leading to the induction equation

(?Tf:foE:Vx(vaanxB)

with the magnetic diffusivity




| MHD equations | MHD equations

The full set of MHD equations combines the induction equation
with the Navier-Stokes equations including the Lorentz-force:

Viscous stress tensor T

1 /dv; Ov
0 N = =
6—"‘: = -V (ov) k 2<3xk+ax,-)
1
g% _ —g(v-V)v7Vp+gg+/i(V><B)><B+V-7_' Tik = 2@V</\ik—§5fkv"')
Lo

Q = TNk,
g% = —o(v-V)e—pV - v+ V. -(kVT)+Q + Q, ’ o
OB Ohmic dissipation @,
5 = V x(vxB—-nV xB)

. Q=-L(V xB).

Assumptions: 1o

o Validity of continuum approximation (enough particles to
define averages)

@ Non-relativistic motions, low frequencies

o Strong collisional coupling: validity of single fluid
approximations, isotropic (scalar) gas pressure

Equation of state
p=(y-1)ee.

v, n and k: viscosity, magnetic diffusivity and thermal conductivity
1o denotes the permeability of vacuum




