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Scope of this lecture

Processes of magnetic field generation and destruction in
turbulent plasma flows

Introduction to general concepts of dynamo theory (this is not
a lecture about the solar dynamo!)

Outline

Intro: Magnetic fields in the Universe
MHD, induction equation
Some general remarks and definitions regarding dynamos
Small scale dynamos
Large scale dynamos (mean field theory)

Kinematic theory
Characterization of possible dynamos
Non-kinematic effects

Concluding remarks
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Magnetic fields in the Universe

Earth
Field strength ∼ 0.5G
Magnetic field present for ∼ 3.5 · 109 years, much longer than
Ohmic decay time (∼ 104 years)
Strong variability on shorter time scales (103 years)

Mercury, Ganymede, (Io), Jupiter, Saturn, Uranus, Neptune
have large scale fields
Sun

Magnetic fields from smallest observable scales to size of sun
22 year cycle of large scale field
Ohmic decay time ∼ 109 years (in absence of turbulence)

Other stars
Stars with outer convection zone: similar to sun
Stars with outer radiation zone: primordial fields, field
generation in convective core

Galaxies
Field strength ∼ µG
Field structure coupled to observed matter distribution
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Geomagnetism

Mostly dipolar field structure (currently)

Credit: NOAA NGDC
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Geomagnetism

Short-term variation on scales of hundreds of years

Independent movement
of the poles

South and North pole are
in general not opposite
to each other (higher
multipoles)

Movements up to 40
km/year (∼ 1 mm/sec)

Credit: Arnaud Chulliat (Institut de Physique du Globe de Paris)
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Geomagnetism

Long-term variation on scales of thousands to millions of years
(deduced from volcanic rocks and sediments)

Mostly random
changes of polarity

A given polarity for
∼ 100, 000 years

Fast switches ∼ 1000
years

Strong variation of
dipole moment and
failed reversals

Credit: US Geological Survey
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Solar Magnetism

Up to 4kG (sunspot
umbra) field in solar
photosphere

Structured over the full
range of observable scales
from 100 km to size of Sun

Large scale field shows
symmetries with respect to
equator

Full disk magnetogram SDO/HMI
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Solar Magnetism

Movie

Large scale field exhibits ∼ 22 year magnetic cycle

11 year cycle present in large scale flow variations (meridional
flow and differential rotation)
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Solar Magnetism

Credit: NASA

Cycle interrupted by grand minima with duration of up to 100
years

Similar overall activity has been present for past ∼ 100, 000
years (tree ring and ice core records of cosmogenic isotopes:
C-14 and Be-10).
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Galactic magnetism

M51, Credit: MPI for Radioastronomy, Germany

Magnetic field derived
from polarization of radio
emission

µG field strength

Magnetic field follows
spiral structure to some
extent

Optically thin dynamo -
Dynamo region can be
observed!
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Magnetic fields in the Universe

Objects from size of a planet to galaxy clusters have large
scale (∼ size of object) magnetic fields

Physical properties of object differ substantially

1,000 km to 100,000 LJ
liquid iron to partially ionized plasma
spherical to disk-shaped
varying influence of rotation (but all of them are rotating)
Rm ∼ 103 . . . 1018

....

Is there a common origin of magnetic field in these objects?

Can we understand this on basis of MHD?
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MHD equations

The basic framework for understanding the dynamics of a
magnetized fluid are the MHD equations. In their most simple
form they are applicable under the following conditions:

Validity of continuum approximation (enough particles to
define averages)

Strong collisional coupling: validity of single fluid
approximations, isotropic (scalar) gas pressure

Non-relativistic motions, low frequencies, high electrical
conductivity

They combine a fluid description in terms of the Navier-Stokes
equations with the non-relativistic Maxwell equations as well as
Ohm’s Law.
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Convective derivative

Continuum approximation means that density (%), velocity (v) and
internal energy (e) can be written a functions of space (x) and
time (t). Quantities can vary in time (along a fluid trajectory) by
either having in-stationary fields (time variation at a fixed location)
or by having transport of a quantity in an inhomogeneous field
(variation in space), i.e.

d%

dt
= lim

∆t→0

%(x + v∆t, t + ∆t)− %(x , t)

∆t

=
∂%

∂t
+ v ·∇%
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Equation of continuity

Mass density changes along fluid trajectory if flow is compressible
(∇ · v 6= 0):

d%

dt
=
∂%

∂t
+ v ·∇% = −%∇ · v

Equivalent conservative formulation:

∂%

∂t
+ ∇ · (%v) = 0

Change of mass in a fixed control volume Ω is given by mass flux
across boundary ∂Ω:

∂m

∂t
=

∫

Ω

∂%

∂t
dV = −

∫

Ω
∇ · (%v)dV = −

∫

∂Ω
(%v)ndA
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Momentum equation

Starting with Newton’s law mdv/dt = F we get per volume:

%
dv
dt

= %
∂v
∂t

+ %(v ·∇)v = f = −∇p + %g︸ ︷︷ ︸
Pressure/Buoyancy force

+ ∇ · τ̄︸ ︷︷ ︸
Viscous force

Using the equation of continuity:

%
∂v
∂t

+%(v ·∇)v =
∂(%v)

∂t
+v∇·(%v)+(%v ·∇)v =

∂(%v)

∂t
+∇·(%vv)

We can derive the ”conservative” form of the momentum equation:

∂(%v)

∂t
+ ∇ · [%vv + pĪ − τ̄ ] = %g

where vv = vivk denotes the dyadic product.
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Kinetic energy equation

With the identity (v ·∇)v = ∇ v2

2 − v × (∇× v) follows:

%
∂

∂t

v2

2
+ %v ·∇v2

2
= −v ·∇p + %v · g + v∇ · τ̄

Using again the equation of continuity can derive a ”conservative”
form:

∂

∂t

(
1

2
%v2

)
+∇·

[
v
(

1

2
%v2 + p

)
− v τ̄

]
= p∇·v +%v ·g−τ̄ ·∇v︸ ︷︷ ︸

Qν

Here Qν = τ̄ ·∇v = τik∂kvi is the formal expression for the
viscous heating.
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Internal energy and total energy equation

First law of thermodynamics: dE + pdV = dW . With e = E/m
and Q = V−1 dW /dt we can write:

%
de

dt
− p

%

d%

dt
= Q

With the equation of continuity and Q = Qν + ∇ · (κ∇T ) (κ heat
conductivity) follows:

∂

∂t
(%e) + ∇ · (v%e − κ∇T ) = −p∇ · v + Qν

Combination with the kinetic energy equation yields:

∂

∂t

(
%e +

1

2
%v2

)
+∇·

[
v
(
%e +

1

2
%v2 + p

)
− v τ̄ − κ∇T

]
= %v ·g
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Navier-Stokes Equations

Primitive formulation:

∂%

∂t
= −∇ · (%v)

%
∂v
∂t

= −%(v ·∇)v −∇p + %g + ∇ · τ̄

%
∂e

∂t
= −%(v ·∇)e − p∇ · v + ∇ · (κ∇T ) + Qν

Conservative formulation (EHD = %e + 1
2%v

2):

∂%

∂t
+ ∇ · (%v) = 0

∂(%v)

∂t
+ ∇ · [%vv + pĪ − τ̄ ] = %g

∂

∂t
EHD + ∇ · [v (EHD + p)− v τ̄ − κ∇T ] = %v · g
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Navier-Stokes Equations

Viscous stress tensor τ̄

Λik =
1

2

(
∂vi
∂xk

+
∂vk
∂xi

)

τik = 2%ν

(
Λik −

1

3
δik∇ · v

)

Qν = τikΛik ,

Equation of state (ideal gas)

p = (γ − 1)% e .

ν and κ: viscosity and thermal conductivity
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Maxwell Equations (relativistic)

Maxwell Equations

∇ · E =
λ

ε0
∇× E = −∂B

∂t

∇× B = µ0 j +
1

c2

∂E
∂t

∇ · B = 0

Transformation of the Lorentz vectors (ct, x) and (cλ, j )

(γ =
√

1− v2/c2−1
):

t ′ = γ
(
t − v · x

c2

)
x ′ = γ ( x − v t )

λ ′ = γ

(
λ− v · j

c2

)
j ′ = γ ( j − v λ )

Transformation of the electro-magnetic field:

E ′‖ = E‖ B ′‖ = B‖

E ′⊥ = γ ( E + v × B )⊥ B ′⊥ = γ

(
B +

1

c2
v × E

)

⊥
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Maxwell Equations (non-relativistic)

Assumptions:

non-relativistic motions and slow evolutions

high conductivity

−→ E � cB, vλ� j , ∂E/∂t � c2 µ0j

∇ · E =
λ

ε0
∇× E = −∂B

∂t
∇× B = µ0 j ∇ · B = 0

Simplified transformations (Galilei-transformation):

t ′ = t x ′ = x − v t

λ ′ = λ− v · j
c2

j ′ = j

E ′ = E + v × B B ′ = B
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Ohm’s law

Equation of motion for drift velocity vd of electrons

neme

(
∂vd
∂t

+
vd
τei

)
= neqe(E + vd × B)−∇pe

τei : collision time between electrons and ions
ne : electron density
qe : electron charge
me : electron mass
pe : electron pressure
With the electric current: j = ne qe vd this gives the generalized
Ohm’s law:

∂j
∂t

+
j
τei

=
neq

2
e

me
E +

qe
me

j × B − qe
me

∇pe

Simplifications:

τei ωL � 1, ωL = eB/me : Larmor frequency

neglect ∇pe
low frequencies (no plasma oscillations)

22 / 86

Ohm’s law

Simplified Ohm’s law
j = σE

with the plasma conductivity

σ =
τeineq

2
e

me

The Ohm’s law we derived so far is only valid in the co-moving
frame of the plasma. Under the assumption of non-relativistic
motions this transforms in the laboratory frame to

j = σ (E + v × B)
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Induction equation

Using Ampere’s law ∇×B = µ0j yields for the electric field in the
laboratory frame

E = −v × B +
1

µ0σ
∇× B

leading to the induction equation

∂B
∂t

= −∇× E = ∇× (v × B − η∇× B)

with the magnetic diffusivity

η =
1

µ0σ
.
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MHD equations

The full set of MHD equations combines the induction equation
with the Navier-Stokes equations including the Lorentz-force:

∂%

∂t
= −∇ · (%v)

%
∂v
∂t

= −%(v ·∇)v −∇p + %g +
1

µ0
(∇× B)× B + ∇ · τ̄

%
∂e

∂t
= −%(v ·∇)e − p∇ · v + ∇ · (κ∇T ) + Qν + Qη

∂B
∂t

= ∇× (v × B − η∇× B)

Assumptions:

Validity of continuum approximation (enough particles to
define averages)

Non-relativistic motions, low frequencies

Strong collisional coupling: validity of single fluid
approximations, isotropic (scalar) gas pressure
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MHD equations

Viscous stress tensor τ

Λik =
1

2

(
∂vi
∂xk

+
∂vk
∂xi

)

τik = 2%ν

(
Λik −

1

3
δik∇ · v

)

Qν = τikΛik ,

Ohmic dissipation Qη

Qη =
η

µ0
(∇× B)2 .

Equation of state
p = (γ − 1)% e .

ν, η and κ: viscosity, magnetic diffusivity and thermal conductivity
µ0 denotes the permeability of vacuum
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