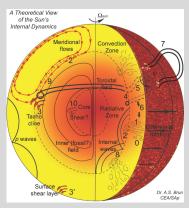


Solar dynamo models – what is the goal?

- ➤ What is a solar dynamo model supposed to do?
 - 1) Show a "solar-like" activity pattern in terms of:
 - Cyclic behavior with equator-ward propagation of activity
 - Surface flux evolution consistent with observations
 - Large scale flow variations consistent with observations
 - 2) Show a "solar-like" amplitude variation from cycle to cycle
 - 3) Allow prediction of future activity
- ➤ Most models struggle already with point 1)
 - Focus this lecture on 1)
 - 2) and 3) can provide additional constraints on dynamo models

The basic dynamo ingredients



➤ Large-scale flows

- Differential rotation
- Meridional flow
- Mean and (cyclic) variation

> Turbulent induction

- Transport
 - · Advective
 - · Diffusive
- α-Effects
 - Key terms that enable dynamo action

> Flux emergence

- Links dynamo to photospheric field observations
- Might play role in dynamo process itself
 - · Babcock-Leighton mechanism

Mean field models

- > Mean field models consider only average quantities
 - Sunspots are a key feature of the solar cycle, but they are averaged away
- Mean field models make strong assumptions that are not well justified from first principles
- > Too many degrees of freedom require "educated guesses"

$$(\overline{v' \times B'})_i = a_{ik}\overline{B}_k + b_{ijk}\frac{\partial \overline{B}_j}{\partial x_k}$$

- Contains 36!!! (mostly unknown) functions of r and 9, in most models only 2 are considered and even that allows for a lot of freedom
- Computing mean field coefficients from 3D simulations (Schrinner et al. 2007, Ghizaru etal. 2011) shows that in general almost all of them are important!
- Mean field models allow us to study certain scenarios or they allow to analyze a complicated 3D simulation, but one has to be very lucky to find the "correct" model for the solar cycle without additional knowledge
- > Non-linear feedback difficult to implement

Numerical modeling approaches

> Meanfield models

- Solve equations for mean flows, mean magnetic field only
- Inexpensive, but need good model for correlations of small scale quantities (e.g. turbulent angular momentum transport), see extensive work by Rüdiger & Kitchatinov)
- Can address the full problem, but not from first principles (models have many degrees of freedom and tunable parameters)

> 3D numerical simulations

- Solve the full set of equations (including small and large scale flows, magnetic field) from first principles
- Very expensive:
 - Low resolution runs for long periods >10 years
 - · High resolution for short periods
- Good understanding of differential rotation, ingredients of solar dynamo, no complete model yet
- Advances in computing infrastructure shift balance toward 3D simulations, but we need both!

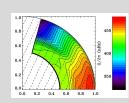
Solar dynamo models

Mean field models

- Convection zone dynamos
- Tachocline/interface dynamos
- Near surface shear layer dynamos
- Flux transport dynamos

Main uncertainties

- Location of dynamo
- Poloidal field regeneration (B_r, B_θ from B_φ: α-effect)
- Turbulent transport (magnetic pumping, turbulent diffusion vs. magnetic buoyancy)
- Role of meridional flow (propagation of activity belt)



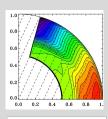
Mean field dynamos

> Thin layer dynamos

- Overshoot/tachocline dynamos
 - Radial shear, αΩ-type dynamos, latitudinal propagating dynamo wave
 - Negative α in northern hemisphere for equatorward propagation
- Surface shear layer?
- Main problem:
 - Typically very short latitudinal wave length (several overlapping cycles)

Distributed dynamos

- Interface dynamos
 - Ω-effect in tachocline, α-effect in CZ, introduced to avoid problems with strong α-quenching
 - · Solutions very sensitive to details



Mean field dynamos

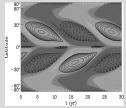
Distributed dynamos

- Flux transport dynamo
 - · Advective transport of field by meridional flow
 - · Propagation of AR belt advection effect
 - · Cycle length linked to overturning time scale of meridional flow
- Central assumption:

Dikpati & Charbonneau (1999)

Dikpati et al. (2004)

- Proper meridional flow profile (mostly single flow cell poleward at top, equatorward near bottom of CZ)
- Weak turbulent transport processes
- Babcock-Leighton α-effect
- Overall:
 - Most successful in reproducing solar like behavior



Dikpati et al. 2004

Schematic of a Babcock-Leighton flux transport model

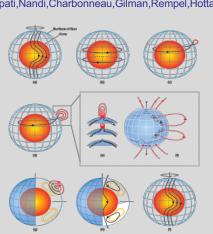
Durney, Choudhuri, Schüssler, Dikpati, Nandi, Charbonneau, Gilman, Rempel, Hotta

Differential rotation

- Toroidal field production
- Stored at base of CZ
- Rising flux tubes

Babcock-Leighton α effect

- Tilt angle of AR
- Leading spots have higher probability to reconnect across equator
- Transport of magnetic field by meridional flow



Solution properties flux transport dynamos Good agreement with basic cycle properties Equatorward propagation Weak cycle overlap Correct phase relation between poloidal and toroidal field

- Less good agreement
 - Poleward extension of butterfly diagram?
 - Polar surface field typically too strong
 - Symmetry of solution (quadrupole preferred)
- More complicated ingredients can improve agreement
 - Strong variation of magnetic diffusivity in CZ
 - Additional α-effect at base of CZ
- Expense: Strong sensitivity to many not well known ingredients

Meridional flow structure, assumptions flux transport dynamo

Observations

- Poleward near surface (surface Doppler and local helioseismology agree well)
- Recent results indicate shallow return flow (Hathaway 2011)?

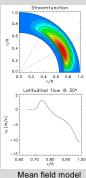
> Theory

- Mean field models: single flow cell, related to inward transport of angular momentum
- 3D: low res runs multi cellular, recent high res single cell, results not yet converged
- Miesch et al. (2008)

 Advection dominated regime difficult to realize:

$$\eta_{turb} \propto H_p V_{rms}$$

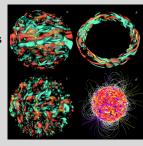
$$V_{merid} \propto V_{rms}^2 / V_{rot}$$



Mean field mode Rempel (2005)

3D dynamo simulations

- > 1981 Gilman & Miller
 - First 3D convective dynamos in a spherical shell (Boussinesq)
- ➤ 1983 Gilman
 - Dynamo simulations with reduced diffusivities
 - · large scale field and periodic field reversal
 - · poleward propagation
- > 1985+ Glatzmaier ...
 - Mostly 3D geodynamo models
- > 2004 Brun, Miesch, Toomre
 - Turbulent dynamo (anelastic)
 - · 800 G peak toroidal field
 - · Mean field 2% of energy
 - · No cyclic behavior



3D simulations

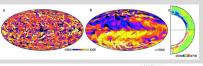
- Solve the full set of equations (including small and large scale flows, magnetic field) from first principles
 - No shortcuts, have to solve for the full problem including differential rotation and meridional flow
 - Non-linear effects automatically included
- > Intrinsic limitations
 - Boundary conditions (radial direction)
 - Tachocline at base of CZ
 - Top boundary typically 20 Mm beneath photosphere
 - Cannot capture solar Re and Rm, how to treat small scales
 - · DNS: resolve dissipation range with artificially increased diffusivities
 - . (I)LES: do only the minimum required to maintain numerical stability
- Very expensive
 - Low resolution runs for long periods >10 years
 - High resolution for short periods
- Good understanding of differential rotation, ingredients of solar dynamo, no complete model yet

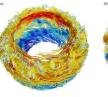
3D dynamo simulations

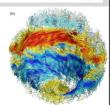
- ➤ 2006 Browning et al.
 - Addition of tachocline
 - Organized ~5 kG field in stably stratified region

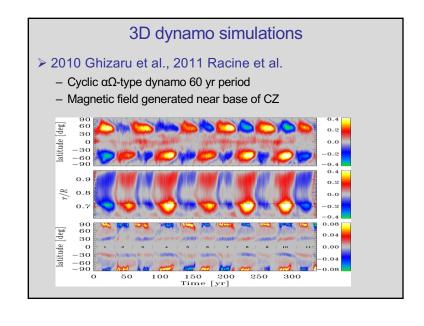
➤ 2008+ Brown et al.

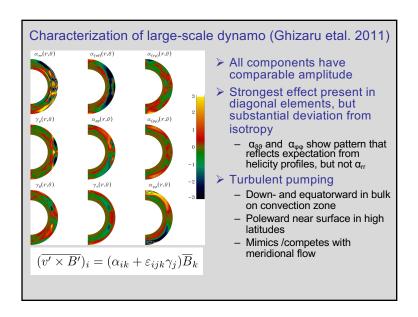
- Faster rotating stars
- Strong field (~10 kG) maintained within CZ
- Cyclic behavior for certain parameter choices (faster rotation)

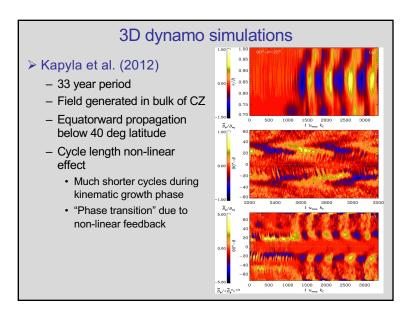


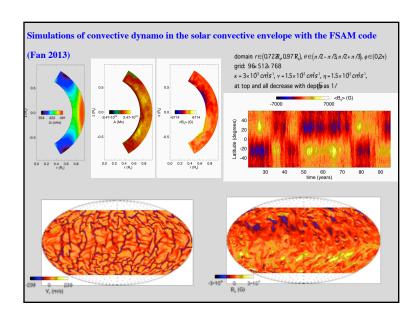












What are the main uncertainties?

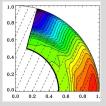
> Large scale flows:

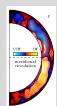
- Differential rotation well known
 - · Role of latitudinal vs. radial shear not clear

$$\Omega$$
 - effect $B_p \cdot \nabla \Omega$

$$\frac{\partial \Omega}{\partial r} > \frac{1}{r} \frac{\partial \Omega}{\partial \vartheta}$$
, but typically $B_r < B_{\vartheta}$

- Role of tachocline (essential or does it just shape activity)
 - Fully convective stars show strong activity!
- Variation of Ω (torsional oscillations) very small
 - Weak magnetic feedback or DR strongly driven?
 - What does this tell us about saturation?
- Meridional flow
 - · Poleward at surface
 - · Flow structure in CZ?
 - Shallow return flow (Hathaway 2011)?





Miesch et al. 2008

3D dynamo simulations

> Recent developments:

- Several independent groups find cyclic dynamos with periods in the 10-60 year range
- Some models with equatorward propagation of activity
- No simple explanation for cycle length and magnetic field patterns
 - Cycle length non-linear effect (longer cycles in saturated phase)
 - Not obvious if different models get similar solutions for the same reason

Contrast to meanfield models:

- In general no single dominant turbulent induction term (like a scalar α-effect) that could capture the behavior
- Non-linear feedback more than just saturation effect (i.e. long cycle length only found in non-linear regime)

What are the main uncertainties?

> Turbulent induction/transport

- In most 3D simulations turbulence is more complicated than a combination of diffusion, advection and α-effects
- Flux transport dynamos assume weak (< 10% of MLT estimates) turbulent transport processes - is that reasonable?
 - η has to be small, but not v and κ (need to transport energy and maintain DR)?
 - no clear indication from numerical experiments for asymmetric magnetic quenching of η , ν and κ
- More general problem
 - Diffusivities of the order $\eta_{turb} \propto H_{p} V_{rms}$ give too short cycles
 - · Are longer cycles an intrinsically non-linear effect?
- How is the poloidal magnetic field maintained?
 - kinematic (turbulent) α-effect?
 - · magnetic saturation, role of magnetic helicity?
 - · driven by magnetic instabilities?

What are the main uncertainties?

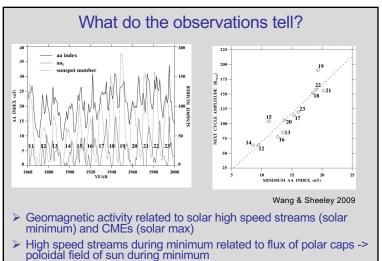
> Flux emergence process

- By-product of dynamo or essential part of dynamo process?
 - 10²⁴ Mx is a lot of flux: 10 kG x 100x100 Mm²
- Poloidal field in photosphere consequence of AR tilt angle
 - Babcock-Leighton α-effect
 - Is that enough to drive the dynamo?
 - Polar flux ~ 10²² Mx about 1% of flux emerging in AR
 - How to get back to 100%
 - DR can do ~100!

> What determines field amplitude

- Feedback on DR, meridional flow?
- Quenching of turbulent induction (magnetic helicity)?

Surface flux evolution and net toroidal flux $\frac{d\Phi^N_{tor}}{dt} = \frac{d}{dt} \left(\int_{\Sigma} B_0 dS \right) = \int_{\delta\Sigma} \left(\mathbf{U} \times \mathbf{B} + \langle \mathbf{u} \times \mathbf{b} \rangle - \eta \nabla \times \mathbf{B} \right) \cdot d\mathbf{I}$ $\frac{d\Phi^N_{tor}}{dt} = \int_0^1 (\Omega - \Omega_{eq}) B_r R_\odot^2 d(\cos\theta) - \frac{\Phi^N_{tor}}{\tau}$ $\frac{d\Phi^N_{tor}}{dt} = \int_0^1 (\Omega - \Omega_{eq}) B_r R_\odot^2 d(\cos\theta) - \frac{\Phi^N_{tor}}{\tau}$ Robert Cameron, and Manfred Schüssler Science 2015;347:1333-1335



➤ Shows strong correlation with upcoming cycle amplitude

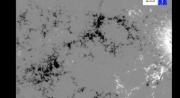
Flux emergence and sunspot formation

➤ General accepted view

- Magnetic flux rising toward surface from deep convection zone
- Observations show at first strong horizontal expansion of emerging flux

Key question

- Transport of flux through convection zone and re-amplification in photosphere:
 - Density contrast of 106
 - B~ρε ε = 1/2 2/3
 - 100 kG -> 100 G - 100 G -> 3kG ???
 - Vigorous convection



Flux emergence event observed with Hinode SOT

Modeling of flux emergence

- ➤ Lower convection zone (up to ~ 20 Mm depth beneath photosphere)
 - Strongly subsonic velocities
 - Ideal gas equation of state sufficient
 - Size of flux tubes smaller than Hp and typical scale of convection
 - Flux tubes travel several times their diameter
 - Interaction with ambient flows (including flows created by rising flux) key to dynamics
 - Density contrast of 100 (out of 106)
 - Modeling approaches
 - Thin flux tube approximation
 - 3D anelastic MHD models
 - · Both with and without background convection

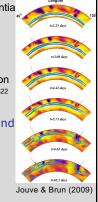
Interaction with convection

➤ 3D anelastic MHD (Jouve & Brun 2009)

- Self consistent interaction with convection, differential rotation and meridional flow (Global convection zone simulation)
- Convective motions additional source of tilt, substantially shape tube during rise
- Challenge: Focus on global picture limits resolution on the scale of flux tube, requires tubes with >>10²² Mx flux

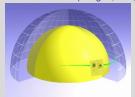
> Thin flux-tubes rising in convective background

- Take velocity from global CZ simulation
- Treat flux tube as thin tube
- Weber, Fan & Miesch 2011

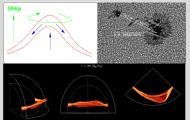


Flux emergence in lower convection zone

(Caligari, Fan, Fisher, Moreno-Insertis, Schüssler ...)



Thin flux tube simulation: Caligari et al. (1995)



- min flux tube simulation: Caligari et al. (1995)
- Too strong for dynamo models
 Twist required for 2D/3D

Explains asymmetry between leading/following spot

Consistent with stability

Consistent results from thin tube

Coriolis force causes tilt of the top

Works best with ~ 100 kG flux tubes

considerations in overshoot region

and 3D simulations

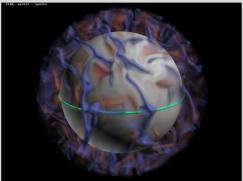
part of tube

simulations

- Prevents fragmentation
 - Induces additional tilt (opposing that from Coriolis force)
- Trade off between stability and tilt

Interaction with convection

3D simulation: Fan (2008)



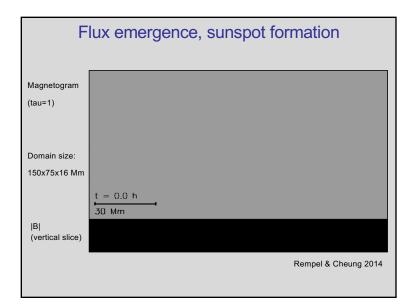
Weber, Fan & Miesch (2011)

- Thin flux tube rising in convective envelope (taken from global 3D simulation)
- Flux tube evolution mostly dominated by convective time scales
- > Less dependence on initial field strength
 - Best results for 40-50 kG (100-150 kG without convection)

Flux emergence in upper most 20 Mm

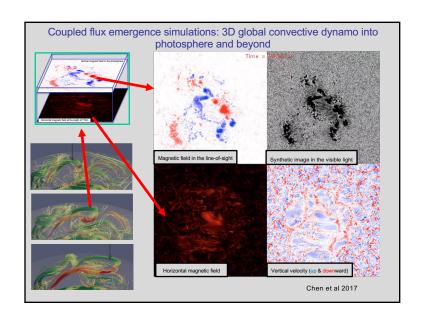
> Upper convection zone

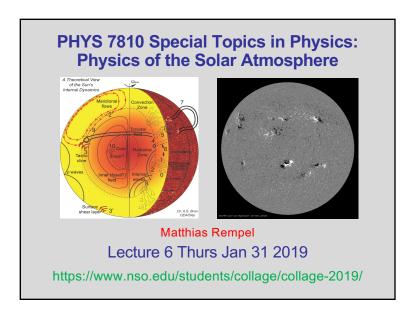
- Subsonic/supersonic transition velocities
- Partial ionization, 3D radiative transfer important
- Size of flux tubes larger than Hp and typical scale of convection
 - · Flux 'tubes' travel about their diameter
 - Density contrast of 104 (out of 106)
 - · Dynamics dominated by strong expansion
 - · Most weakening of field strength near surface
- Modeling approaches
 - · Fully compressible MHD (with RT and realistic EOS)
- Currently treated independent from deep convection zone (computational constraints)



Flux emergence and active region formation a changing paradigm Early work based on rising thin flux tube - Caligari, Schuessler, Moreno-Insertis, Ferriz-Mas, Fan, Fisher ~1993-1996 - Strong ~100 kG flux tubes rise from base of CZ · Buoyancy instabilities in Overshoot region · Flux emergence in low latitudes Tilt angles - Retrograde flows due to angular momentum conservation Asymmetric stretching of rising loop leads to stronger leading Thin flux tube models including ambient convection Weber et al. (2011 – 2015) - Advective transport by ambient convection significant - Less sensitive to initial field strength - Tilt a combination of Coriolis forces and ambient helical flows > 3D global dynamo models - Nelson et al. 2014, Fan & Fang 2014 Flux bundles originate within CZ ~10 kG, non-axisymmetric zonal shear significant - Convective/buoyant transport towards surface in giant cells - Prograde flows in emerging flux regions

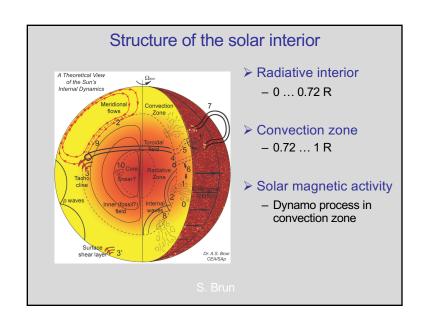


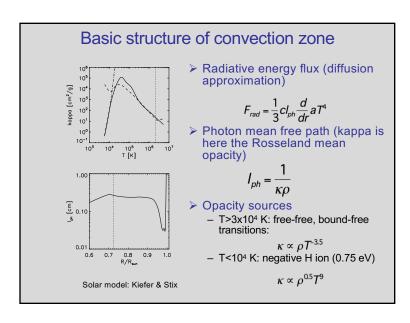


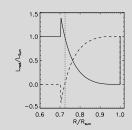


Outline

- ➤ Energy transport in solar convection zone, photosphere and above
- ➤ Origin and structure of magnetic field in the solar photosphere
- > Magnetic modulation of solar energy output





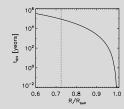


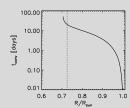
Radiative energy flux (diffusion approximation)

$$F_{rad} = \frac{1}{3}cI_{ph}\frac{d}{dr}aT^4$$

- ▶ Drop of radiation energy density makes RT inefficient (I_{ph}~ const)
 - Temperature gradient increases until convective instability sets in
- Convection zone in between 2 radiative boundary layers
 - Bottom: L ~ 100 Mm
 - − Top: L ~ 100 km

Time scales of convection zone





> Kelvin-Helmholtz time scale:

$$t_{KH}(r) = \frac{\int_{r}^{R_{Sun}} 4\pi r^2 E_{int} dr}{L_{Sun}}$$

Convective overturning time scale

$$t_{Conv}(r) = \frac{H_p(r)}{V_{Conv}(r)}$$

- Convection zone is a well mixed reservoir with a large heat capacity
 - Thermal properties of CZ respond very slowly to a disturbance of the energy flux

Key properties of convection zone

- ➤ Convection driven by strong cooling at the top and gentle heating at the bottom
 - Resolving the top boundary is the key for understanding convective dynamics
- Convection zone has a large heat capacity and is well mixed
 - $\Delta L \sim 0.1\%$ over solar cycle years does not lead to a significant temperature response in the convection zone
 - Changes of F_{conv} in the bulk of the CZ likely do not lead to significant observable irradiance changes (this question is not fully settled)

Modeling the solar photosphere

> Key ingredients:

- MHD
- Radiative transfer
 - 3D, i.e. angular dependence resolved
 - Frequency dependence of opacity (capture by a few opacity bins)
- Equation of state with partial ionization

> Open bottom boundary condition

- Cannot afford simulation the entire convection zone
- Use open bottom boundary conditions:
 - · Convective energy flux across boundary
 - · Downflows exit the domain with their thermal properties
 - · Upflows have a prescribed fixed entropy

Photospheric MHD

Fully compressible MHD

$$\begin{array}{lcl} \frac{\partial \varrho}{\partial t} & = & -\nabla \cdot (\varrho \mathbf{v}) \\ \frac{\partial \varrho \mathbf{v}}{\partial t} & = & -\nabla \cdot (\varrho \mathbf{v} \mathbf{v}) + \mathbf{j} \times \mathbf{B} - \nabla P + \varrho \mathbf{g} \\ \frac{\partial E_{\mathrm{tot}}}{\partial t} & = & -\nabla \cdot \left[\mathbf{v} \left(E_{\mathrm{tot}} + P + \frac{B^2}{8\pi} \right) - \frac{1}{4\pi} \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) \right] + \varrho \mathbf{v} \cdot \mathbf{g} + \frac{Q_{\mathrm{rad}}}{Q_{\mathrm{rad}}} \\ \frac{\partial \mathbf{B}}{\partial t} & = & \nabla \times (\mathbf{v} \times \mathbf{B}) \end{array}$$

With

$$E_{\text{tot}} = E_{\text{int}} + \frac{1}{2}\varrho v^2 + \frac{B^2}{8\pi}$$

Energy flux

$$\mathbf{F} = \mathbf{v}(E_{\text{int}} + P) + \mathbf{v}\frac{1}{2}\varrho v^2 + \frac{1}{4\pi}\mathbf{E} \times \mathbf{B}$$

Enthalpy Kinetic energy Poynting flux

Photospheric radiative transfer

Radiative transfer equation (I specific intensity, $\hat{\mathbf{n}}$ unit vector in ray direction)

$$\frac{dI_{\nu}}{ds}(\hat{\mathbf{n}}) = \kappa_{\nu} \varrho (S_{\nu} - I_{\nu}(\hat{\mathbf{n}}))$$

Source function $S_{\nu}=B_{\nu}(T)$ in local thermodynamic equilibrium (LTE)

Radiative energy flux

$$\mathbf{F}_{\nu} = \int_{4\pi} I_{\nu}(\hat{\mathbf{n}}) \hat{\mathbf{n}} d\Omega$$

Average intensity

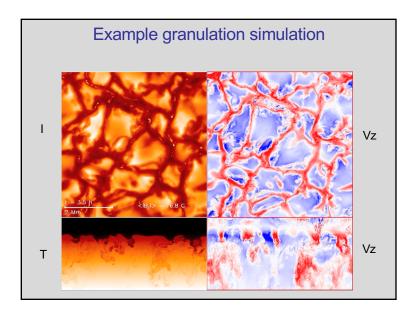
$$J_{\nu} = \frac{1}{4\pi} \int_{4\pi} I_{\nu}(\hat{\mathbf{n}}) d\Omega$$

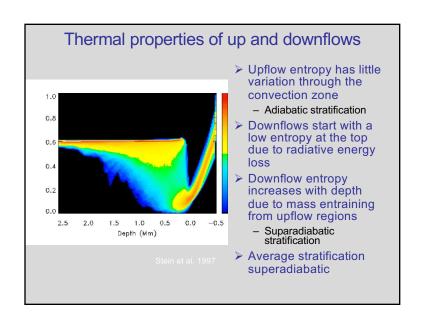
Radiative heating/cooling

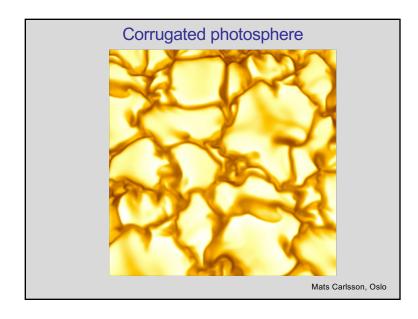
$$Q_{\rm rad} = -\int_{\mathcal{U}} (\nabla \cdot \mathbf{F}_{\nu}) d\nu = 4\pi \varrho \int_{\mathcal{U}} \kappa_{\nu} (J_{\nu} - S_{\nu}) d\nu$$

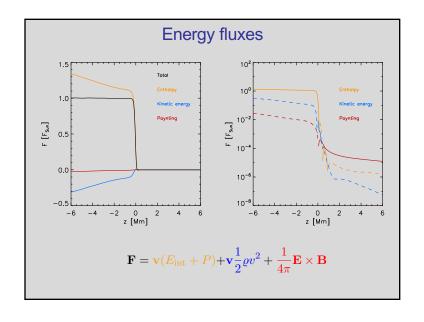
Numerical treatment

- Compute a discrete number of rays, typically 24 48
- \bullet Compute a discrete number of frequency bins, typically 1 12









Relation between intensity and photospheric properties

Radiative transfer equation (I drop here the ν indices and angular dependence for clarity)

$$\frac{dI}{ds} = \kappa \varrho(S - I)$$

Optical depth along ray (unit of $\kappa \varrho$ is cm $^{-1}$)

$$d\tau_{\circ} = -\kappa o ds$$

Alternate form of RT equation

$$\frac{dI}{d\tau_s} = I - S$$

Formal solution

$$I(\tau_1) = I(\tau_2)e^{-(\tau_2-\tau_1)} + \int_{\tau_2}^{\tau_2} S(x)e^{-(x-\tau_1)}dx$$

Observable Intensity ($au_1=0,\ au_2=\infty$)

$$I(0) = \int_{0}^{\infty} S(x)e^{-x}dx$$

Assume linear source function $S=S_0+S_1 au$

$$I(0) = S(\tau_s = 1) = \frac{\sigma}{\pi} T^4(\tau_s = 1)$$

Magnetic modulation of photospheric emission

➤ Long lived, large-scale magnetic field concentrations

- Suppression of convective energy transport
- Energy radiated away in photosphere cannot be replenished
- $S(\tau = 1) = \frac{\sigma}{\tau} T^4(\tau = 1)$ is reduced
- Dark features, i.e. sunspot umbra

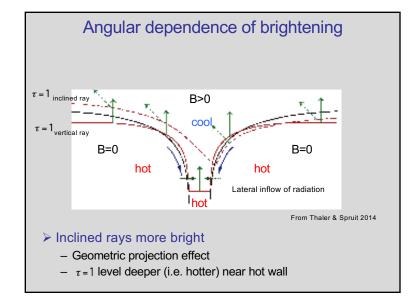
> Short lived, small-scale flux concentrations

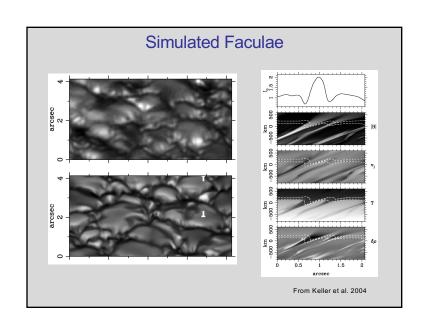
- Approximate pressure balance

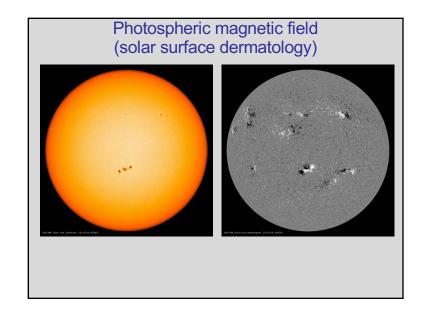
$$p_i + \frac{B^2}{8\pi} = p_e \rightarrow p_i < p_e \rightarrow \rho_i < \rho_e$$

- Flux concentration more transparent, i.e. radiation escapes from a deeper layer where T is larger
- Lateral inflow of radiation keeps structure hot
- $S(\tau = 1) = \frac{\sigma}{\tau} T^4(\tau = 1)$ is enhanced
- Brightpoints, faculae
- Typical required field strength (p_{phot} ~ 10⁵ dyn/cm²)

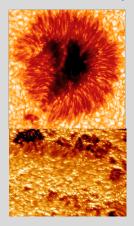
$$B \approx \sqrt{8\pi p_{phot}} \approx 1 - 1.5kG$$







Phospheric magnetic field



> Active regions

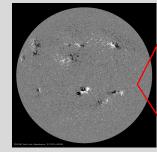
- Solar cycle variation
- Origin: Large scale dynamo
- Sunspots:
 - dark
- Plage:
 - · dark pores
 - · bright faculae

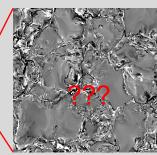
➤ Quiet Sun

- No convincing evidence for a cycle variation
- Magnetic field independent from large scale dynamo
- Grand minimum = quiet sun??

Swedish solar telescope

Quiet Sun magnetism





- Most of the solar surface is covered by "quiet Sun" at any time of the sunspot cycle
- Unsigned flux at τ=1 is a few times 10²⁴ Mx, i.e. comparable to the flux emerging in form of active regions throughout the cycle
- Where does this field come from and what does it tell us about the solar dynamo(s)?

Quiet Sun – What are the open questions?

> How is the field distributed?

- Spectral energy distribution
 - Preferred scale (i.e. "flux tubes" at 100 km)?
- Strength distribution
 - · Fraction of kG field?

> Where does the field come from?

- Remnant flux from active region decay
 - · Only weak indication from observations
- Small scale dynamo
 - · Origin independent from solar cycle
 - · Theoretical challenges

What is a small scale dynamo?

 $R_m \gg 1$ advection dominated regime (ideal MHD)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

Equivalent expression

$$\frac{\partial \mathbf{B}}{\partial \mathbf{A}} = -(\mathbf{v} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{v} - \mathbf{B} \nabla \cdot \mathbf{v}$$

Equivalent expression

$$\frac{d}{dt}\frac{\mathbf{B}}{\varrho} = \left(\frac{\mathbf{B}}{\varrho} \cdot \nabla\right)\mathbf{v}$$

Lagrangian particle paths

$$dx_2 - y(x_1, t)$$

onsider small separations:

$$\delta = \mathbf{x}_1 - \mathbf{x}_2$$
 $\frac{d\delta}{dt} = (\delta \cdot \nabla)$

In a chaotic flow the separation grows exponentially (for small δ). Due to mathematical similarity the equation:

$$\frac{d}{dt}\frac{\mathbf{B}}{\rho} = \left(\frac{\mathbf{B}}{\rho} \cdot \nabla\right)$$

has exponentially growing solutions, too. We neglected here η , exponentially growing solutions require $R_m > \mathcal{O}(100)$.

