
Symmetry constraints

α, β, γ and δ depend on large scale symmetries of the system
defining the symmetry properties of the turbulence (e.g. rotation
and stratification). Additional to that the expansion

E = αB + γ × B − β∇× B − δ ×∇× B + . . .

is a relation between polar and axial vectors:

E: polar vector, independent from handedness of coordinate
system

B: axial vector, involves handedness of coordinate system in
definition (curl operator, cross product)

Handedness of coordinate system pure convention (contains no
physics), consistency requires:

α, δ: pseudo tensor

β, γ: true tensors
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Symmetry constraints

Turbulence with rotation and stratification

true tensors: δij , gi , gigj , ΩiΩj , Ωiεijk

pseudo tensors: εijk , Ωi , Ωigj , giεijk

Symmetry constraints allow only certain combinations:

αij = α0(g ·Ω)δij + α1 (giΩj + gjΩi ) , γi = γ0gi + γ1εijkgjΩk

βij = β0 δij + β1 gigj + β2 ΩiΩj , δi = δ0Ωi

The scalars α0 . . . δ0 depend on quantities of the turbulence such
as rms velocity and correlation times scale.

isotropic turbulence: only β

+ stratification: β + γ

+ rotation: β + δ

+ stratification + rotation: α can exist
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Simplified expressions

Assuming |B ′| � |B| in derivation + additional simplification for
(quasi) isotropic, non-mirror symmetric, (weakly) inhomogeneous
turbulence (see homework assignment):

vi ′vj ′ ∼ δij , αij = αδij , βij = ηtδij

Leads to:

∂B
∂t

= ∇× [αB + (v + γ)× B − (η + ηt)∇× B
]

with the scalar quantities

α = −1

3
τc v ′ · (∇× v ′), ηt =

1

3
τc v ′2

and vector

γ = −1

6
τc∇v ′2 = −1

2
∇ηt

Expressions are independent of η (in this approximation),
indicating fast dynamo action!
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Turbulent diffusivity - destruction of magnetic field

Turbulent diffusivity dominant dissipation process for large scale
field in case of large Rm:

ηt =
1

3
τc v ′2 ∼ L vrms ∼ Rmη � η

Formally ηt comes from advection term (transport term,
non-dissipative)

Turbulent cascade transporting magnetic energy from the
large scale L to the micro scale lm (advection + reconnection)

ηj 2
m ∼ ηt j

2 −→ Bm

lm
∼
√

Rm
B

L

Important: The large scale determines the energy dissipation rate,
lm adjusts to allow for the dissipation on the microscale.
Present for isotropic homogeneous turbulence
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Turbulent diamagnetism, turbulent pumping

Expulsion of flux from regions with larger turbulence intensity
’diamagnetism’

γ = −1

2
∇ηt

Turbulent pumping (stratified convection):

γ = −1

6
τc∇v ′2

Upflows expand, downflows converge

Stronger velocity and smaller filling factor of downflows

Mean induction effect of up- and downflow regions does not
cancel

Downward transport found in numerical simulations

Requires inhomogeneity (stratification)
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Kinematic α-effect

α = −1

3
τc v ′ · (∇× v ′) Hk = v ′ · (∇× v ′) kinetic helicity

Requires rotation + additional preferred direction (stratification)
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Babcock-Leighton α-effect

Similar to kinetic α-effect, but driven by magnetic buoyancy

Leading polarities have larger propability to reconnect across
equator with counterpart on other hemisphere

Polarity of hemisphere = polarity of following sunspots
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Fast or slow dynamo?

Turbulent induction effects require reconnection to operate;
however, the expressions

αij =
1

2
τc

(
εiklvk ′

∂vl ′

∂xj
+ εjklvk ′

∂vl ′

∂xi

)

γi = −1

2
τc

∂

∂xk
v ′i v
′
k

βij =
1

2
τc

(
v ′2δij − vi ′vj ′

)

are independent of η (in this approximation), indicating fast
dynamo action (no formal proof since we made strong
assumptions!)
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How well does this work in practice?

From Racine et al. 2011
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How well does this work in practice?

α = −1
3τc v ′ · (∇× v ′)

From Racine et al. 2011
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Generalized Ohm’s law

What is needed to circumvent Cowling’s theorem?

Crucial for Cowling’s theorem: Impossibility to drive a current
parallel to magnetic field

Cowling’s theorem does not apply to mean field if a mean
current can flow parallel to the mean field (since total field
non-axisymmetric this is not a contradiction!)

j = σ̃
(
E + v × B + γ × B +αB

)

σ̃ contains contributions from η, β and δ.
Ways to circumvent Cowling:

α-effect

anisotropic conductivity (off diagonal elements + δ-effect)
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Meanfield energy equation

d

dt

∫
B2

2µ0
dV = −µ0

∫
ηj 2

dV −
∫

v · (j × B) dV +

∫
j · E dV

Energy conversion by α-effect ∼ αj · B
α-effect only pumps energy into meanfield if meanfield is
helical (current helicity must have same sign as α)!

Dynamo action does not necessarily require that j · E is an
energy source. It can be sufficient if E changes field topology
to circumvent Cowling, if other energy sources like differential
rotation are present (i.e. Ω× j effect).
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