Kinematic approach

- Solving the 3D MHD equations is not always feasible
- Semi-analytical approach preferred for understanding fundamental properties of dynamos
- Evaluate turbulent induction effects based on induction equation for a given velocity field
 - · Velocity field assumed to be given as 'background' turbulence, Lorentz-force feedback neglected (sufficiently weak magnetic field)
 - What correlations of a turbulent velocity field are required for dynamo (large scale) action?
 - Theory of onset of dynamo action, but not for non-linear saturation
- More detailed discussion of induction equation

Advection, diffusion, magnetic Reynolds number $R_m \ll 1$: diffusion dominated regime $rac{\partial m{B}}{\partial t} = \eta \Delta m{B}$. Only decaying solutions with decay (diffusion) time scale $\tau_{\rm d} \sim \frac{L^2}{n}$ Object $\eta [m^2/s]$ L[m]U[m/s]R earth (outer core) 106 10^{-3} 300 10⁴ years 108 10^{10} $10^9\,{ m years}$ 100 sun (plasma conductivity) 1 sun (turbulent conductivity) 10^8 10^{8} 100 100 $3\,\mathrm{years}$ liquid sodium lab experiment 0.1 1 10 100 $10\,\mathrm{s}$

Advection, diffusion, magnetic Reynolds number

Incompressible fluid ($\nabla \cdot \mathbf{v} = 0$):

$$rac{dm{B}}{dt} = (m{B}\cdotm{
abla})m{v}$$

Velocity shear in the direction of \boldsymbol{B} plays key role. Mathematically similar equation for compressible fluid (Walen equation):

$$\frac{d}{dt}\frac{\boldsymbol{B}}{\varrho} = \left(\frac{\boldsymbol{B}}{\varrho}\cdot\boldsymbol{\nabla}\right)$$

Vertical flux transport in statified medium:

- B ~ ρ no expansion in direction of \boldsymbol{B} • $B \sim \varrho^{2/3}$ isotropic expansion
- $B \sim \varrho^{1/2}$ 2D expansion in plane containing **B** • B = const.only expansion in direction of **B**

Advection, diffusion, magnetic Reynolds number

L: typical length scale U: typical velocity scale L/U: time unit aD

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times \left(\boldsymbol{v} \times \boldsymbol{B} - \frac{1}{R_m} \boldsymbol{\nabla} \times \boldsymbol{B} \right)$$

with the magnetic Reynolds number

$$R_m = \frac{UL}{\eta} \; .$$

Advection, diffusion, magnetic Reynolds number

 $R_m \gg 1$ advection dominated regime (ideal MHD)

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B})$$

Equivalent expression

$$\frac{\partial \boldsymbol{B}}{\partial t} = -(\boldsymbol{v}\cdot\boldsymbol{\nabla})\boldsymbol{B} + (\boldsymbol{B}\cdot\boldsymbol{\nabla})\boldsymbol{v} - \boldsymbol{B}\boldsymbol{\nabla}\cdot\boldsymbol{v}$$

• advection of magnetic field

- amplification by shear (stretching of field lines)
- amplification through compression

Alfven's theorem

Let Φ be the magnetic flux through a surface F with the property that its boundary ∂F is moving with the fluid:

$$\Phi = \int_{F} \boldsymbol{B} \cdot d\boldsymbol{f} \longrightarrow \frac{d\Phi}{dt} = 0$$

Dynamos: Motivation

- For $\mathbf{v}=0$ magnetic field decays on timescale $au_{d}\sim L^{2}/\eta$
- Earth and other planets:
 - $\bullet\,$ Evidence for magnetic field on earth for $3.5\cdot10^9$ years while $\tau_d\sim10^4$ years
 - Permanent rock magnetism not possible since $T > T_{\rm Curie}$ and field highly variable \longrightarrow field must be maintained by active process
- Sun and other stars:
 - ullet Evidence for solar magnetic field for \sim 300 000 years ($^{10}{
 m Be}$)
 - ${\scriptstyle \bullet }$ Most solar-like stars show magnetic activity independent of age
 - Indirect evidence for stellar magnetic fields over life time of stars
 - But $\tau_d \sim 10^9$ years!
 - Primordial field could have survived in radiative interior of sun, but convection zone has much shorter diffusion time scale ~ 10 years (turbulent diffusivity)

Mathematical definition of dynamo

- Is this dynamo different from those found in powerplants?
 - Both have conducting material and relative motions (rotor/stator in powerplant vs. shear flows)
- Difference mostly in one detail:
 - Dynamos in powerplants have wires (very inhomogeneous conductivity), i.e. the electric currents are strictly controlled
 - · Mathematically the system is formulated in terms of currents
 - A short circuit is a major desaster!
 - For astrophysical dynamos we consider homogeneous
 - conductivity, i.e. current can flow anywhere
 - Mathematically the system is formulated in terms of *B* (*j* is eliminated from equations whenever possible).
 A short circuit is the normal mode of operation!
- Homogeneous vs. inhomogeneous dynamos

What means large/small in practice (Sun)?

Figure: Full disk magnetogram SDO/HMI

> < 個 > < 目 > < 目 > 一目 - のへ(

Mathematical definition of dynamo

S bounded volume with the surface ∂S , **B** maintained by currents contained within S, $B \sim r^{-3}$ asymptotically,

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B} - \eta \, \boldsymbol{\nabla} \times \boldsymbol{B}) \quad \text{in } \boldsymbol{S}$$
$$\boldsymbol{\nabla} \times \boldsymbol{B} = \boldsymbol{0} \quad \text{outside } \boldsymbol{S}$$
$$[\boldsymbol{B}] = \boldsymbol{0} \quad \text{across } \partial \boldsymbol{S}$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{B} = \boldsymbol{0}$$

 $\boldsymbol{v} = 0$ outside S, $\boldsymbol{n} \cdot \boldsymbol{v} = 0$ on ∂S and

$$E_{
m kin} = \int_{S} rac{1}{2} arrho \mathbf{v}^2 \, dV \leq E_{
m max} \quad orall t$$

v is a dynamo if an initial condition $\boldsymbol{B} = \boldsymbol{B}_0$ exists so that

 $E_{
m mag} = \int_{-\infty}^{\infty} \frac{1}{2\mu_0} B^2 \, dV \ge E_{
m min} \quad \forall \ t$

Large scale/small scale dynamos

Decompose the magnetic field into large scale part and small scale part (energy carrying scale of turbulence) $B = \overline{B} + B'$:

$$\overline{E}_{
m mag} = \int rac{1}{2\mu_0} \overline{oldsymbol{B}}^2 \, dV + \int rac{1}{2\mu_0} \overline{oldsymbol{B}'^2} \, dV \; .$$

• Small scale dynamo: $\overline{B}^2 \ll \overline{B'^2}$

• Large scale dynamo: $\overline{\pmb{B}}^2 \ge \overline{\pmb{B'}^2}$

Almost all turbulent (chaotic) velocity fields are small scale dynamos for sufficiently large R_m , large scale dynamos require additional large scale symmetries (see second half of this lecture)

What means large/small in practice (Sun)?

Figure: Numerical sunspot simulation. Dimensions: Left 50x50 Mm, Right: 12.5x12.5 Mm

<ロ> < 四> < 四> < 三> < 三> < 三> < 三> のへで

Small scale dynamo action

Lagrangian particle paths:

$$\frac{d\mathbf{x}_1}{dt} = \mathbf{v}(\mathbf{x}_1, t) \qquad \frac{d\mathbf{x}_2}{dt} = \mathbf{v}(\mathbf{x}_2)$$

t)

Consider small separations:

$$\boldsymbol{\delta} = \boldsymbol{x}_1 - \boldsymbol{x}_2 \qquad rac{d \boldsymbol{\delta}}{dt} = (\boldsymbol{\delta} \cdot \boldsymbol{
abla}) \boldsymbol{v}$$

Chaotic flows have exponentially growing solutions. Due to mathematical simularity the equation:

$$\frac{d}{dt}\frac{\boldsymbol{B}}{\varrho} = \left(\frac{\boldsymbol{B}}{\varrho}\cdot\boldsymbol{\nabla}\right)$$

has exponentially growing solutions, too. We neglected here $\eta,$ exponentially growing solutions require $R_m > O(100)$.

Slow/fast dynamos Influence of magnetic diffusivity on growth rate • Fast dynamo: growth rate independent of R_m (stretch-twist-fold mechanism)

- Slow dynamo: growth rate limited by resistivity (stretch-reconnect-repack)
- Fast dynamos relevant for most astrophysical objects since $R_m \gg 1$
- Dynamos including (resistive) reconnection steps can be fast provided the reconnection is fast

SSD in solar photosphere: kinematic phase

SSD in solar photosphere: power spectra

- scales (here 30 km (4 km numerical resolution, would be $100-1000\mbox{ m}$ for the Sun
- Saturated phase: Magnetic energy peaks at granular scales (mostly flat spectrum at large scales). Dynamo action moved toward larger scales, where most of the kinetic energy sits (downflow lanes \sim 300 km)

Differential rotation and meridional flow

Induction effects of axisymmetric flows on axisymmetric field:

$$\mathbf{B} = B\mathbf{e}_{\mathbf{\Phi}} + \boldsymbol{\nabla} \times (A\mathbf{e}_{\mathbf{\Phi}})$$

$$\mathbf{v} = v_r \mathbf{e_r} + v_{\theta} \mathbf{e_{\theta}} + \Omega r \sin \theta \mathbf{e_{\Phi}}$$

Differential rotation most dominant shear flow in stellar convection zones: $% \label{eq:conversion}$

Meridional flow by-product of DR, observed as poleward surface flow in case of the sun

Differential rotation and meridional flow

- Weak poloidal seed field can lead to significant field amplification
- No source term for poloidal field
- Decay of poloidal field on resistive time scale
- Ultimate decay of toroidal field
- Not a dynamo!
- What is needed?
- Source for poloidal field

Large scale dynamo theory

Some history:

- 1919 Sir Joeseph Larmor: Solar magnetic field maintained by motions of conducting fluid?
- 1937 Cowling's anti-dynamo theorem and many others
- 1955 Parker: decomposition of field in axisymmetric and non-axisymmetric parts, average over induction effects of non-axisymmetric field
- 1964 Braginskii, Steenbeck, Krause: Mathematical frame work of mean field theory developed
- last 2 decades 3D dynamo simulations

Differential rotation and meridional flow

Spherical geometry:

$$\frac{\partial B}{\partial t} + \frac{1}{r} \left(\frac{\partial}{\partial r} (r v_r B) + \frac{\partial}{\partial \theta} (v_\theta B) \right) = r \sin B_p \cdot \nabla \Omega + \eta \left(\Delta - \frac{1}{(r \sin \theta)^2} \right) B$$
$$\frac{\partial A}{\partial t} + \frac{1}{r \sin \theta} v_p \cdot \nabla (r \sin \theta A) = \eta \left(\Delta - \frac{1}{(r \sin \theta)^2} \right) A$$

- Meridional flow: Independent advection of poloidal and toroidal field
- Differential rotation: Source for toroidal field (if poloidal field not zero)
- Diffusion: Sink for poloidal and toroidal field
- No term capable of maintaining poloidal field against Ohmic decay!

Cowling's anti-dynamo theorem

A stationary axisymmetric magnetic field with currents limited to a finite volume in space cannot be maintained by a velocity field with finite amplitude.

Ohm's law of the form $\mathbf{j} = \sigma \mathbf{E}$ only decaying solutions, focus here on $\mathbf{j} = \sigma(\mathbf{v} \times \mathbf{B})$.

On O-type neutral line B_p is zero, but $\mu_0 j_t = \nabla \times B_p$ has finite value, but cannot be maintained by $(\mathbf{v} \times B)_t = (\mathbf{v}_p \times B_p)$.

Reynolds rules

We need to define an averaging procedure to define the mean and the fluctuating field.

For any function f and g decomposed as $f = \overline{f} + f'$ and $g = \overline{g} + g'$ we require that the Reynolds rules apply

$$\overline{\overline{f}} = \overline{f} \longrightarrow \overline{f'} = 0 \overline{f+g} = \overline{f} + \overline{g} \overline{f\overline{g}} = \overline{f}\overline{g} \longrightarrow \overline{f'\overline{g}} = 0 \overline{\partial f/\partial x_i} = \partial \overline{f}/\partial x_i \overline{\partial f/\partial t} = \partial \overline{f}/\partial t .$$

Examples:

- Longitudinal average (mean = axisymmetric component)
- Ensemble average (mean = average over several realizations of chaotic system)

(日) (母) (日) (日) (日) (の)()

Meanfield induction equation

Average of induction equation:

$$\frac{\partial \overline{\boldsymbol{B}}}{\partial t} = \boldsymbol{\nabla} \times \left(\overline{\boldsymbol{v}' \times \boldsymbol{B}'} + \overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}} - \eta \boldsymbol{\nabla} \times \overline{\boldsymbol{B}} \right)$$

New term resulting from small scale effects:

 $\overline{m{\mathcal{E}}}=\overline{m{v}' imesm{B}'}$

Fluctuating part of induction equation:

$$\left(\frac{\partial}{\partial t} - \eta \Delta\right) \boldsymbol{B}' - \boldsymbol{\nabla} \times (\boldsymbol{\overline{v}} \times \boldsymbol{B}') = \boldsymbol{\nabla} \times \left(\boldsymbol{v}' \times \boldsymbol{\overline{B}} + \boldsymbol{v}' \times \boldsymbol{B}' - \boldsymbol{\overline{v}' \times B'}\right)$$

Kinematic approach: \mathbf{v}' assumed to be given

- \bullet Solve for $\pmb{B}',$ compute $\overline{\pmb{v}'\times\pmb{B}'}$ and solve for $\overline{\pmb{B}}$
- Term $\mathbf{v}' \times \mathbf{B}' \overline{\mathbf{v}' \times \mathbf{B}'}$ leading to higher order correlations (closure problem)

Ø > < ∈ > < € > = ≥ = 0

Symmetry constraints

Decomposing a_{ij} and $\partial \overline{B}_j/\partial x_k$ into symmetric and antisymmetric components:

$$a_{ij} = \underbrace{\frac{1}{2}(a_{ij} + a_{ji})}_{\alpha_{ij}} + \underbrace{\frac{1}{2}(a_{ij} - a_{ji})}_{-\varepsilon_{ijk}\gamma_{k}}$$

$$\frac{\partial \overline{B}_{j}}{\partial x_{k}} = \frac{1}{2}\left(\frac{\partial \overline{B}_{j}}{\partial x_{k}} + \frac{\partial \overline{B}_{k}}{\partial x_{j}}\right) + \underbrace{\frac{1}{2}\left(\frac{\partial \overline{B}_{j}}{\partial x_{k}} - \frac{\partial \overline{B}_{k}}{\partial x_{j}}\right)}_{-\frac{1}{2}\varepsilon_{ik}(\nabla \times \overline{B})_{i}}$$

Leads to:

$$\overline{\mathcal{E}}_{i} = \alpha_{ij}\overline{B}_{j} + \varepsilon_{ikj}\gamma_{k}\overline{B}_{j} - \underbrace{\frac{1}{2}b_{ijk}\varepsilon_{jkl}(\boldsymbol{\nabla}\times\overline{\boldsymbol{B}})_{l}}_{\beta_{il}-\varepsilon_{ilm}\delta_{m}} (\boldsymbol{\nabla}\times\overline{\boldsymbol{B}})_{l} + \dots$$

Mean field induction equation

Induction equation for \overline{B} :

$$\frac{\partial \overline{\boldsymbol{B}}}{\partial t} = \boldsymbol{\nabla} \times \left[\boldsymbol{\alpha} \overline{\boldsymbol{B}} + (\overline{\boldsymbol{v}} + \boldsymbol{\gamma}) \times \overline{\boldsymbol{B}} - (\eta + \beta) \, \boldsymbol{\nabla} \times \overline{\boldsymbol{B}} - \boldsymbol{\delta} \times (\boldsymbol{\nabla} \times \overline{\boldsymbol{B}}) \right]$$

Interpretation on first sight:

- α : new effect
- γ : acts like advection (turbulent advection effect)
- β : acts like diffusion (turbulent diffusivity)
- δ : special anisotropy of diffusion tensor

Mean field expansion of turbulent induction effects

Exact expressions for $\overline{\mathcal{E}}$ exist only under strong simplifying assumptions (see homework assignment).

In general $\overline{\mathcal{E}}$ is a linear functional of $\overline{\mathbf{B}}$:

$$\overline{\mathcal{E}}_i(\boldsymbol{x},t) = \int_{-\infty}^{\infty} d^3 x' \int_{-\infty}^{t} dt' \, \mathcal{K}_{ij}(\boldsymbol{x},t,\boldsymbol{x}',t') \, \overline{B}_j(\boldsymbol{x}',t') \, .$$

Can be simplified if a sufficient scale separation is present:

- $I_c \ll L$
- $\tau_c \ll \tau_L$

Leading terms of expansion:

$$\overline{\mathcal{E}}_i = \mathsf{a}_{ij}\overline{B}_j + \mathsf{b}_{ijk}\frac{\partial\overline{B}_j}{\partial x_k}$$

In stellar convection zones scale separation also only marginally justified (continuous turbulence spectrum)!

Symmetry constraints

Overall result:

$$\overline{\mathcal{E}} = lpha \overline{\mathcal{B}} + \gamma imes \overline{\mathcal{B}} - eta \,
abla imes \overline{\mathcal{B}} - \delta imes (m{
abla} imes \overline{\mathcal{B}}) + \dots$$

With:

$$\begin{array}{rcl} \alpha_{ij} & = & \displaystyle \frac{1}{2} \left({{a}_{ij} + {a}_{ji}} \right) \,, & & \gamma_i \, = \, \displaystyle - \frac{1}{2} \varepsilon_{ijk} {a}_{jk} \\ \beta_{ij} & = & \displaystyle \frac{1}{4} \left(\varepsilon_{ikl} {b}_{jkl} + \varepsilon_{jkl} {b}_{ikl} \right) \,, & & \delta_i \, = \, \displaystyle \frac{1}{4} \left({b}_{jji} - {b}_{jij} \right) \end{array}$$