
Kinematic approach

Solving the 3D MHD equations is not always feasible

Semi-analytical approach preferred for understanding
fundamental properties of dynamos

Evaluate turbulent induction effects based on induction
equation for a given velocity field

Velocity field assumed to be given as ’background’ turbulence,
Lorentz-force feedback neglected (sufficiently weak magnetic
field)
What correlations of a turbulent velocity field are required for
dynamo (large scale) action?
Theory of onset of dynamo action, but not for non-linear
saturation

More detailed discussion of induction equation
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Advection, diffusion, magnetic Reynolds number

L: typical length scale U: typical velocity scale L/U: time unit

∂B
∂t

= ∇×
(

v × B − 1

Rm
∇× B

)

with the magnetic Reynolds number

Rm =
U L

η
.
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Advection, diffusion, magnetic Reynolds number

Rm � 1: diffusion dominated regime

∂B
∂t

= η∆B .

Only decaying solutions with decay (diffusion) time scale

τd ∼
L2

η

Object η[m2/s] L[m] U[m/s] Rm τd
earth (outer core) 2 106 10−3 300 104 years
sun (plasma conductivity) 1 108 100 1010 109 years
sun (turbulent conductivity) 108 108 100 100 3 years
liquid sodium lab experiment 0.1 1 10 100 10 s
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Advection, diffusion, magnetic Reynolds number

Rm � 1 advection dominated regime (ideal MHD)

∂B
∂t

= ∇× (v × B)

Equivalent expression

∂B
∂t

= −(v ·∇)B + (B ·∇)v − B ∇ · v

advection of magnetic field

amplification by shear (stretching of field lines)

amplification through compression
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Advection, diffusion, magnetic Reynolds number

Incompressible fluid (∇ · v = 0):

dB
dt

= (B ·∇)v

Velocity shear in the direction of B plays key role. Mathematically
similar equation for compressible fluid (Walen equation):

d

dt

B
%

=

(
B
%
·∇
)

v

Vertical flux transport in statified medium:

B ∼ % no expansion in direction of B
B ∼ %2/3 isotropic expansion

B ∼ %1/2 2D expansion in plane containing B
B = const. only expansion in direction of B
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Alfven’s theorem

Let Φ be the magnetic flux through a surface F with the property
that its boundary ∂F is moving with the fluid:

Φ =

∫

F
B · df −→ dΦ

dt
= 0

Flux is ’frozen’ into the fluid

Field lines ’move’ with plasma
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Dynamos: Motivation

For v = 0 magnetic field decays on timescale τd ∼ L2/η

Earth and other planets:

Evidence for magnetic field on earth for 3.5 · 109 years while
τd ∼ 104 years
Permanent rock magnetism not possible since T > TCurie and
field highly variable −→ field must be maintained by active
process

Sun and other stars:

Evidence for solar magnetic field for ∼ 300 000 years (10Be)
Most solar-like stars show magnetic activity independent of age
Indirect evidence for stellar magnetic fields over life time of
stars
But τd ∼ 109 years!
Primordial field could have survived in radiative interior of sun,
but convection zone has much shorter diffusion time scale
∼ 10 years (turbulent diffusivity)
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Mathematical definition of dynamo

S bounded volume with the surface ∂S , B maintained by currents
contained within S , B ∼ r−3 asymptotically,

∂B
∂t

= ∇× (v × B − η∇× B) in S

∇× B = 0 outside S

[B] = 0 across ∂S

∇ · B = 0

v = 0 outside S , n · v = 0 on ∂S and

Ekin =

∫

S

1

2
%v2 dV ≤ Emax ∀ t

v is a dynamo if an initial condition B = B0 exists so that

Emag =

∫ ∞

−∞

1

2µ0
B2 dV ≥ Emin ∀ t
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Mathematical definition of dynamo

Is this dynamo different from those found in powerplants?

Both have conducting material and relative motions
(rotor/stator in powerplant vs. shear flows)

Difference mostly in one detail:

Dynamos in powerplants have wires (very inhomogeneous
conductivity), i.e. the electric currents are strictly controlled
Mathematically the system is formulated in terms of currents
A short circuit is a major desaster!
For astrophysical dynamos we consider homogeneous
conductivity, i.e. current can flow anywhere
Mathematically the system is formulated in terms of B (j is
eliminated from equations whenever possible).
A short circuit is the normal mode of operation!

Homogeneous vs. inhomogeneous dynamos
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Large scale/small scale dynamos

Decompose the magnetic field into large scale part and small scale
part (energy carrying scale of turbulence) B = B + B ′:

Emag =

∫
1

2µ0
B2

dV +

∫
1

2µ0
B ′2 dV .

Small scale dynamo: B2 � B ′2

Large scale dynamo: B2 ≥ B ′2

Almost all turbulent (chaotic) velocity fields are small scale
dynamos for sufficiently large Rm, large scale dynamos require
additional large scale symmetries (see second half of this lecture)
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What means large/small in practice (Sun)?

Figure: Full disk magnetogram SDO/HMI
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What means large/small in practice (Sun)?

Figure: Numerical sunspot simulation. Dimensions: Left 50x50 Mm,
Right: 12.5x12.5 Mm
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Small scale dynamo action

Lagrangian particle paths:

dx1

dt
= v(x1, t)

dx2

dt
= v(x2, t)

Consider small separations:

δ = x1 − x2
dδ

dt
= (δ ·∇)v

Chaotic flows have exponentially growing solutions. Due to
mathematical simularity the equation:

d

dt

B
%

=

(
B
%
·∇
)

v

has exponentially growing solutions, too. We neglected here η,
exponentially growing solutions require Rm > O(100).
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SSD in solar photosphere: kinematic phase
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SSD in solar photosphere: saturated phase

Movie

41 / 86

SSD in solar photosphere: power spectra

Movie

Kinematic phase: Magnetic energy peaks at smallest resolved
scales (here 30 km (4 km numerical resolution, would be
100− 1000 m for the Sun

Saturated phase: Magnetic energy peaks at granular scales
(mostly flat spectrum at large scales). Dynamo action moved
toward larger scales, where most of the kinetic energy sits
(downflow lanes ∼ 300 km)
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Large scale/small scale dynamos

Amplification through field line stretching

Twist-fold required to repack field into original volume

Twist-fold requires 3D - there are no dynamos is 2D!

Magnetic diffusivity allows for change of topology
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Slow/fast dynamos

Influence of magnetic diffusivity on growth rate

Fast dynamo: growth rate independent of Rm

(stretch-twist-fold mechanism)

Slow dynamo: growth rate limited by resistivity
(stretch-reconnect-repack)

Fast dynamos relevant for most astrophysical objects since
Rm � 1

Dynamos including (resistive) reconnection steps can be fast
provided the reconnection is fast
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Differential rotation and meridional flow

Induction effects of axisymmetric flows on axisymmetric field:

B = BeΦ + ∇× (AeΦ)

v = vrer + vθeθ + Ω r sin θeΦ

Differential rotation most dominant shear flow in stellar convection
zones:

Meridional flow by-product of DR, observed as poleward surface
flow in case of the sun
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Differential rotation and meridional flow

Spherical geometry:

∂B

∂t
+

1

r

(
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

)
=

r sin Bp ·∇Ω + η

(
∆− 1

(r sin θ)2

)
B

∂A

∂t
+

1

r sin θ
vp ·∇(r sin θA) = η

(
∆− 1

(r sin θ)2

)
A

Meridional flow: Independent advection of poloidal and
toroidal field

Differential rotation: Source for toroidal field (if poloidal field
not zero)

Diffusion: Sink for poloidal and toroidal field

No term capable of maintaining poloidal field against Ohmic
decay!
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Differential rotation and meridional flow

Weak poloidal seed field can lead to significant field
amplification

No source term for poloidal field

Decay of poloidal field on resistive time scale

Ultimate decay of toroidal field

Not a dynamo!

What is needed?

Source for poloidal field
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Cowling’s anti-dynamo theorem

A stationary axisymmetric magnetic field with currents limited to a
finite volume in space cannot be maintained by a velocity field with
finite amplitude.

Ohm’s law of the form j = σE only decaying solutions, focus here
on j = σ(v × B).
On O-type neutral line Bp is zero, but µ0jt = ∇× Bp has finite
value, but cannot be maintained by (v × B)t = (vp × Bp).
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Large scale dynamo theory

Some history:

1919 Sir Joeseph Larmor: Solar magnetic field maintained by
motions of conducting fluid?

1937 Cowling’s anti-dynamo theorem and many others

1955 Parker: decomposition of field in axisymmetric and
non-axisymmetric parts, average over induction effects of
non-axisymmetric field

1964 Braginskii, Steenbeck, Krause: Mathematical frame
work of mean field theory developed

last 2 decades 3D dynamo simulations
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Reynolds rules

We need to define an averaging procedure to define the mean and
the fluctuating field.
For any function f and g decomposed as f = f + f ′ and
g = g + g ′ we require that the Reynolds rules apply

f = f −→ f ′ = 0

f + g = f + g

f g = f g −→ f ′g = 0

∂f /∂xi = ∂f /∂xi

∂f /∂t = ∂f /∂t .

Examples:

Longitudinal average (mean = axisymmetric component)

Ensemble average (mean = average over several realizations
of chaotic system)
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Meanfield induction equation

Average of induction equation:

∂B
∂t

= ∇× (v ′ × B ′ + v × B − η∇× B
)

New term resulting from small scale effects:

E = v ′ × B ′

Fluctuating part of induction equation:

(
∂

∂t
− η∆

)
B ′−∇×(v×B ′) = ∇×(v ′ × B + v ′ × B ′ − v ′ × B ′

)

Kinematic approach: v ′ assumed to be given

Solve for B ′, compute v ′ × B ′ and solve for B
Term v ′ × B ′ − v ′ × B ′ leading to higher order correlations
(closure problem)
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Mean field expansion of turbulent induction effects

Exact expressions for E exist only under strong simplifying
assumptions (see homework assignment).

In general E is a linear functional of B:

E i (x , t) =

∫ ∞

−∞
d3x ′

∫ t

−∞
dt ′Kij(x , t, x ′, t ′)B j(x ′, t ′) .

Can be simplified if a sufficient scale separation is present:

lc � L

τc � τL

Leading terms of expansion:

E i = aijB j + bijk
∂B j

∂xk

In stellar convection zones scale separation also only marginally
justified (continuous turbulence spectrum)!
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Symmetry constraints

Decomposing aij and ∂B j/∂xk into symmetric and antisymmetric
components:

aij =
1

2
(aij + aji )

︸ ︷︷ ︸
αij

+
1

2
(aij − aji )

︸ ︷︷ ︸
−εijkγk

∂B j

∂xk
=

1

2

(
∂B j

∂xk
+
∂Bk

∂xj

)
+

1

2

(
∂B j

∂xk
− ∂Bk

∂xj

)

︸ ︷︷ ︸
− 1

2
εjkl (∇×B)l

Leads to:

E i = αijB j + εikjγkB j −
1

2
bijkεjkl
︸ ︷︷ ︸
βil−εilmδm

(∇× B)l + . . .
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Symmetry constraints

Overall result:

E = αB + γ × B − β∇× B − δ × (∇× B) + . . .

With:

αij =
1

2
(aij + aji ) , γi = −1

2
εijkajk

βij =
1

4
(εiklbjkl + εjklbikl) , δi =

1

4
(bjji − bjij)
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Mean field induction equation

Induction equation for B:

∂B
∂t

= ∇×[αB + (v + γ)× B − (η + β)∇× B − δ × (∇× B)
]

Interpretation on first sight:

α: new effect

γ: acts like advection (turbulent advection effect)

β: acts like diffusion (turbulent diffusivity)

δ: special anisotropy of diffusion tensor
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