Part II: Radiative transfer and Spectropolarimetry

Hands-on exercise: Estimating magnetic field from the observations

Ivan Milić (CU/LASP/NSO)
February 27, 2019

Quick Summary

- The emerging polarized radiation is governed by the polarized radiative transfer equation
- Emission is unpolarized
- Absorption is now 4×4 matrix that transforms Stokes components into each other.
- Elements of that matrix are given by Zeeman effect acting on the absorbing atoms.
- Today we are studying simplified solutions.

Polarized RTE

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{cccc}
\eta_{I} & \eta_{Q} & \eta_{U} & \eta_{V} \\
\eta_{Q} & \eta_{I} & \rho_{V} & -\rho_{U} \\
\eta_{U} & -\rho_{V} & \eta_{I} & \rho_{Q} \\
\eta_{V} & \rho_{U} & -\rho_{Q} & \eta_{I}
\end{array}\right)\left(\begin{array}{c}
I-B_{V}(T) \\
Q \\
U \\
V
\end{array}\right)
$$

Where, for example:

$$
\begin{gathered}
\eta_{I}=\frac{\eta_{0}}{2}\left\{\phi_{0} \sin ^{2} \theta+\frac{1}{2}\left[\phi_{+1}+\phi_{-1}\right]\left(1+\cos ^{2} \theta\right)\right\} \\
\eta_{V}=\frac{\eta_{0}}{2}\left[\phi_{-1}-\phi_{+1}\right] \cos \theta
\end{gathered}
$$

$\eta_{0}=\chi_{\lambda} / \chi_{\text {referent }}$

We are often interested in the circular polarization the most

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{cccc}
\eta_{I} & 0 & 0 & \eta_{V} \\
0 & \eta_{I} & 0 & 0 \\
0 & 0 & \eta_{I} & 0 \\
\eta_{V} & 0 & 0 & \eta_{I}
\end{array}\right)\left(\begin{array}{c}
I-B_{V}(T) \\
Q \\
U \\
V
\end{array}\right)
$$

And that turns into:

$$
\begin{aligned}
& \frac{d I}{d \tau}=\eta_{I} I-\eta_{I} B+\eta_{V} V \\
& \frac{d V}{d \tau}=\eta_{V} I-\eta_{V} B+\eta_{I} V
\end{aligned}
$$

Do the good old, add, subtract thingie:

$$
\begin{gathered}
\frac{d(I \pm V)}{d \tau}=\left(\eta_{I} \pm \eta_{V}\right)(I \pm V-B) \\
\eta_{I}+\eta_{V}=\eta_{0} \phi_{r} \\
\eta_{I}-\eta_{V}=\eta_{0} \phi_{b}
\end{gathered}
$$

Let's say $I_{r}=I+V, I_{b}=I-V$

$$
\begin{aligned}
& \frac{d I_{r}}{d \tau}=\eta_{0} \phi_{r}\left(I_{r}-B\right) \\
& \frac{d I_{b}}{d \tau}=\eta_{0} \phi_{b}\left(I_{b}-B\right)
\end{aligned}
$$

After solving for the two components

Not that, $I_{r}(\lambda)=I_{0}\left(\lambda-\Delta \lambda_{B}\right)$, and $I_{b}(\lambda)=I_{0}\left(\lambda+\Delta \lambda_{B}\right)$

Our Stokes profiles would look like this

In the limit of small $\Delta \lambda_{B}$:

$$
\begin{aligned}
& I+V=I_{r}(\lambda)=I_{0}\left(\lambda-\Delta \lambda_{B}\right)=I_{0}(\lambda)-I_{0}^{\prime}(\lambda) \Delta \lambda_{B} \\
& I-V=I_{b}(\lambda)=I_{0}\left(\lambda+\Delta \lambda_{B}\right)=I_{0}(\lambda)+I_{0}^{\prime}(\lambda) \Delta \lambda_{B}
\end{aligned}
$$

So

$$
V=-\frac{d l_{0}}{d \lambda} \Delta \lambda_{B}
$$

Where:

$$
\begin{gathered}
\Delta \lambda_{B}=4.67 \times 10^{-13} \AA^{-1} \mathrm{G}^{-1} \mathrm{~g} \lambda_{0}^{2} \mathrm{~B} \\
V \propto-\frac{d l}{d \lambda} \times B
\end{gathered}
$$

Weak field approximation

The simplest, yet rather reliable way to deduce the mean magnetic field in the observed pixel. We will now use this approximation to estimate magnetic field from a set of observations.

- Line center wavelenghts are 6301.5 and $6302.5 \AA$ (check NIST).
- Lande factors of the lines are: 1.67 and 2.49 (At BASS2000 solar spectrum atlas website there is a pdf atlas with all the Lande factors)
- That is all we need, let's start coding!

Milne Eddington Approximation

$$
I_{\lambda}=a+b / k \phi_{\lambda}
$$

Milne Eddington for polarized radiation

The formulas are now somewhat more complicated, but we are again parametrizing our atmosphere with only a handful of parameters:

- a, b describe source function variation
- k describes strength of the line
- a describes amount of damping
- v describes velocity for Doppler broadening
- $v_{\text {los }}$ describes line-of-sight velocity
- \vec{B} three numbers describing magnetic field vector
- And, in the implementation I suggested, there are μ.

Milne Eddington fitting

- Set-up line parameters
- Using Milne forward module. Define your merit function (usually χ^{2}).
- Minimize merit function w.r.t to model parameters (previous slide).
- Repeat for all the pixels.
- You just did an inversion.

