COLLAGE 2019

Misc Topics on Magnetic Fields

Xudong Sun (UH/IfA)

Apr 18 2019

Outline

- Many Modes of Eruption (cont'd)
- Flare/CME prediction
- Misc topics

Many Modes of Eruption

Eruption Plasma Experiments

Myers et al. (2015)

Kink vs Torus Instability

Experiment: Myers et al. (2015)

Observation + modeling: Jing et al. (2018)

Flux Emergence as Trigger

Kusano et al. (2012)

Importance of Field Orientation

Kusano et al. (2012)

Jets

Hinode/XRT

Cirtain et al. (2007)

(One of) Jet Mechanism

Wyper et al. (2017)

Circular Ribbon Flare

Masson et al. (2009); Wang & Liu (2012); Sun et al. (2013)

Fan-Spine Topology

Sun et al. (2013)

Sympathetic Eruptions

Schrijver & Title (2011)

Long-Range Coupling: Reconnection

Török et al. (2011); Titov et al. (2012)

Long-Range Coupling: Waves

"Coronal seismology"

Flare/CME Prediction

Solar vs Stellar Super Flares

Maehara et al. (2012)

Flare Statistics

- Power law for frequency, etc.
- Stochasticity involved: deterministic prediction difficult
- Need to catch the "big guys"

"Because the likelihood of flares larger than approximately X30 remains empirically unconstrained, we present indirect arguments, based on records of sunspots and on statistical arguments, that solar flares in the past four centuries have likely not substantially exceeded the level of the largest flares observed in the space era, and that there is at most about a 10% chance of a flare larger than about X30 in the next 30 years."

Aly-Sturrock Conjecture

- For a simply connected field, the fully opened field has a higher magnetic energy than the corresponding force-free field (Aly 1984; Sturrock 1991)
- Way out: resistive processes; partially open field; multi-polar field; nonforce-free field, etc.

Q: What problem does the conjecture create for eruption?

Mikić & Linker (1994)

Threshold of Magnetic Energy

• Magnetic Virial Theorem: Energy of FFF is determined by boundary condition (see HW3 Q2):

$$E_{\rm ff} = \frac{R_\odot^3}{8\pi} \oint (B_r^2 - B_\theta^2 - B_\phi^2) \left|_{r=R_\odot} d\Omega\right.$$

- Free magnetic energy from extrapolation rarely exceeds $\sim 0.5 E_p$
- "Partially open field" energy as upper bound? (e.g., Amari et al. 2011)

Threshold of Magnetic Helicity

$$H_V = \int (\boldsymbol{A} + \boldsymbol{A}_p) \cdot (\boldsymbol{B} - \boldsymbol{B}_p) dV$$

$$H_j = \int (\boldsymbol{A} - \boldsymbol{A}_p) \cdot (\boldsymbol{B} - \boldsymbol{B}_p) dV$$

Pariat et al. (2017)

Magnetic Field Proxies

Parameters U	TABLE 3 Ised in the Discriminant Analysis	
Description	Formula	Variable
	Atmospheric Seeing	
Median of the granulation contrast	$s = median(\Delta I)$	5
Distr	ibution of Magnetic Fields	
Moments of vertical magnetic field	$B_z = B \cdot e_z$	$\mathcal{M}(B_z)$
Total unsigned flux	$\Phi_{ m tot} = \sum B_2 dA$	$\Phi_{ m tot}$
Absolute value of the net flux	$ \Phi_{\rm net} = \sum B_z dA $	Pnet
Moments of horizontal magnetic field	$B_h=\sqrt{B_x^2+B_y^2}$	$\mathcal{M}(B_h)$
Distri	bution of Inclination Angle	
Moments of inclination angle	$\gamma = \tan^{-1}(B_{\pi}/B_{h})$	$\mathscr{M}(\gamma)$
Distribution of the Magnitude	of the Horizontal Gradients of the Magnetic Fields	
Moments of total field gradients	$ \nabla_h B = \sqrt{(\partial B/\partial x)^2 + (\partial B/\partial y)^2}$	$\mathcal{M}(\nabla_h B)$
Moments of vertical field gradients	$ \nabla_h B_z = \sqrt{(\partial B_z/\partial x)^2 + (\partial B_z/\partial y)^2}$	$\mathcal{M}(\nabla_h B_z)$
Moments of horizontal field gradients	$ \nabla_h B_h = \sqrt{(\partial B_h / \partial x)^2 + (\partial B_h / \partial y)^2}$	$\mathcal{M}(\nabla_h B_h)$
Distribut	ion of Vertical Current Density	
Moments of vertical current density	$J_z = (\partial B_y / \partial x - \partial B_x / \partial y) / \mu_0$	$\mathcal{M}(J_z)$
Total unsigned vertical current	$I_{\rm tot} = \sum J_z dA$	Itot
Absolute value of the net vertical current	$ I_{\rm net} = \sum J_z dA $	I _{net}
Sum of absolute value of net currents in each polarity	$ I_{nct}^{B} = \sum J_{z}(B_{z} > 0) dA + \sum J_{z}(B_{z} < 0) dA $	$ I_{\rm net}^B $
Moments of vertical heterogeneity current density ^a	$J_z^h = (b_y \partial B_x / \partial y - b_x \partial B_y / \partial x) / \mu_0$	$\mathcal{M}(J_z^h)$
Total unsigned vertical heterogeneity current	$I^h_{ m tot} = \sum J^h_z dA$	$I_{ m tot}^h$
Absolute value of net vertical heterogeneity current	$ I^h_{ m net} = \sum J^h_z dA $	$ I_{\rm net}^{h} $
Distr	ibution of Twist Parameter	
Moments of twist parameter ^b	$\alpha = CJ_z/B_z$	$\mathscr{M}(\alpha)$
Best-fit force-free twist parameter ^b	$\boldsymbol{B} = \alpha_{\mathrm{ff}} \boldsymbol{\nabla} \times \boldsymbol{B}$	$ \alpha_{\rm ff} $
Distr	ibution of Current Helicity	
Moments of current helicity ^c	$h_c = CB_z(\partial B_y/\partial x - \partial B_x/\partial y)$	$\mathcal{M}(h_c)$
Total unsigned current helicity	$H_c^{ m tot} = \sum h_c dA$	$H_c^{ m tot}$
Absolute value of net current helicity	$ H_c^{ m net} = \sum h_c dA $	$ H_c^{\rm net} $
Dis	tribution of Shear Angles	
Moments of three-dimensional shear angle ^d	$\Psi = \cos^{-1}(\mathbf{B}^{p} \cdot \mathbf{B}^{o} / \mathbf{B}^{o} \mathbf{B}^{o})$	$\mathscr{M}(\Psi)$
Area with shear $\geq \Psi_0$, $\Psi_0 = 45^\circ$, 80°	$A(\Psi > \Psi_0) = \sum_{\Psi > \Psi_0} dA$	$\Lambda(\Psi>45^\circ),\ \Lambda(\Psi>80^\circ)$
Moments of three-dimensional neutral-line shear angle	$\Psi_{\rm NL} = \cos^{-1}(\boldsymbol{B}_{\rm NL}^{p} \cdot \boldsymbol{B}_{\rm NL}^{a} / \boldsymbol{B}_{\rm NL}^{p} \boldsymbol{B}_{\rm NL}^{a})$	$\mathscr{M}(\Psi_{\mathrm{NL}})$
Length of neutral line with shear $> \Psi_0$	$L(\Psi_{ m NL} > \Psi_0) = \sum_{\Psi_{ m NL} > \Psi_0} dL$	$L(\Psi_{\rm NL} > 45^{\circ}), \ L(\Psi_{\rm NL} > 80^{\circ})$
Moments of horizontal shear anglee	$\psi = \cos^{-1}(\boldsymbol{B}_{h}^{p} \boldsymbol{\cdot} \boldsymbol{B}_{h}^{o}/\boldsymbol{B}_{h}^{p}\boldsymbol{B}_{h}^{o})$	$\mathscr{M}(\psi)$
Area with horizontal shear $>\psi_0$	$A(\psi > \psi_0) = \sum_{\psi > \psi_0} dA$	$A(\psi > 45^{\circ}), \ A(\psi > 80^{\circ})$
Moments of horizontal neutral-line shear angle	$\psi_{\mathrm{NL}} = \cos^{-1}(\mathbf{B}^{\rho}_{h,NL} \cdot \mathbf{B}^{o}_{h,NL} / \mathbf{B}^{\rho}_{h,NL} \mathbf{B}^{o}_{h,NL})$	$\mathscr{M}(\psi_{\mathbf{NL}})$
Length of neutral line with horizontal shear $> \psi_0$	$L(\psi_{ m NL} > \psi_0) = \sum_{\psi_{ m NL} > \psi_0} dL$	$L(\psi_{\rm NL} > 45^{\circ}), \ L(\psi_{\rm NL} > 80^{\circ})$
Distribution of Phot	ospheric Excess Magnetic Energy Density	
Moments of photospheric excess magnetic energy density ^d	$\rho_e = (B^{\rho} - B^{o})^2 / 8\pi$	$\mathcal{M}(\rho_e)$
Total photospheric excess magnetic energy	$E_e = \sum \rho_e dA$	E_e

Leka & Barnes (2003)

Schrijver (2007)

Hoop Force vs Confinement

Falconer et al. (2009)

Amari et al. (2018)

Machine Learning

Bobra & Couvidat (2015); Jonas et al. (2018)

Misc Topics on Magnetic Fields

- Techniques for coronal B
- Comets!
- Prediction of Cycle 25

In Pursuit of Coronal B

- Zeeman effect at visible & IR lines (*DKIST*)
- Hanle effect at NUV, visible, & IR lines
- Gyroresonance/Free-free emission at radio
- Faraday rotation at radio
- Coronal seismology in EUV
- Coronal stereoscopy & tomography

SOLARC; Fe XIII 1075 nm

Lin, Kuhn, & Coulter (2004)

Sun-Grazing Comet: C/2011 N3

C/2011 W3 (Comet Lovejoy)

Downs et al. (2013)

C/2011 W3 (Comet Lovejoy)

1000 1500 500 2000 2500 $\tau_{O_V,O_{VI}}$ [s]

 $n_e \,\left[\mathrm{cm}^{-3}\right]$

Downs et al. (2013)

Cycle 24 Prediction 😁

Can We Do Better for Cycle 25?

Q: Make an educated bet?

Key: Lt.Solid = North; Dashed = -South; Med.Solid = Average: (N-S)/2; Hvy.Solid = Smoothed Average

http://wso.stanford.edu/gifs/Polar.gif

Cycle 25 Prediction!

Apparently solar physicists DO learn from their mistakes.

Next: DKIST Science (Dr. Tom Schad)

