COLLAGE 2019

Active Region Magnetic Fields II

Xudong Sun (UH/IfA)

Apr 16 2019

Outline

- Energy & helicity consideration
- Pre-eruption magnetic fields
- Many modes of eruption

Energy & Helicity Consideration

Magnetic Energy & Helicity

• Coronal time scale is short compared to photosphere: quasi-static

 $t_A = L/v_A \approx 30 \text{ Mm} / 300 \text{ km s}^{-1} = 100 \text{ s}$

• Low plasma beta: force-free

 $(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} = 0$

• Energy accumulation, preferably in filament channel

$$E_f = \int \frac{B^2}{8\pi} dV - \int \frac{B_p^2}{8\pi} dV$$

• Helicity accumulation, preferably in filament channel (global variable)

$$H = \int A \cdot B dV$$

Magnetic Energy & Helicity

• Helicity is gauge dependent

$$\nabla \times \boldsymbol{A} = \nabla \times (\boldsymbol{A} + \nabla \boldsymbol{\psi}) = \boldsymbol{B}$$

• Relative helicity is gauge independent

$$H_R = \int (\boldsymbol{A} + \boldsymbol{A}_p) \cdot (\boldsymbol{B} - \boldsymbol{B}_p) dV$$

• Faraday's Law (underdetermined from magnetic field)

$$\frac{\partial \boldsymbol{B}}{\partial t} = -\nabla \times c\boldsymbol{E}, \text{ but, } \nabla \times \boldsymbol{E} = \nabla \times (\boldsymbol{E} + \nabla \boldsymbol{\psi})$$

• Ideal electric field (c.f. ideal induction equation)

$$cE = -v \times B$$

Poynting & Helicity Flux

• Poynting flux through photosphere

$$S_z = \frac{c}{4\pi} \boldsymbol{E}_h \times \boldsymbol{B}_h \cdot \hat{\boldsymbol{z}}$$
$$= [v_z B_h^2 - (\boldsymbol{v}_h \cdot \boldsymbol{B}_h) B_z] / 4\pi$$

• Helicity flux through photosphere

$$\frac{dH_R}{dt} = -2\int (A_p \times E) \cdot \hat{z} da$$
$$= -2\int (A_p \cdot v_h) B_z da + 2\int (A_p \cdot B_h) v_z da$$

• There may be an upper limit of energy and helicity before eruption sets in

Surface Velocity Estimate

Fourier local correlation tracking (FLCT; Fisher & Welsch 2008)

Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM; Schuck 2008)

Magnetic Energy Injection

Kazachenko et al. (2015)

Magnetic Polarity Inversion Line (PIL)

- Magnetic flux emergence & submergence
- Energy accumulation in filament channel
- Helicity condensation (inverse cascade) in filament channel

Pre-eruption Magnetic Fields

Observation: Magnetogram

Leka et al. (1996)

López Ariste et al. (2006)

Filament

Sigmoid

Canfield et al. (1999)

Titov & Démoulin (1999)

Filament + Sigmoid

Pevtsov (2002)

Coronal Cavity

Under-dense & hotter (!)

Karna et al. (2017)

Coronal polarization + FORWARD modeling

Dove et al. (2011)

UFO

Two Massive UFO Refueling At The Sun (Formation)

63,881 views

1 551 **●** 52 *→* SHARE =+ SAVE ...

SUBSCRIBE 142K

Sheared Arcade & Flux Rope

Separatrix surface

Gibson et al. (2004)

Force-Free Field Modeling

• Statement of problem:

 $\nabla \times \boldsymbol{B} = \alpha \boldsymbol{B}$ $\boldsymbol{B}(z=0) = \boldsymbol{B}_{\rm obs}$

- Non-linear force-free field (NLFFF):
 α varies in space
- Generally an ill-posed problem; photosphere (high β) non-force-free
- Solutions need to be interpreted with care

Solutions

Sun et al. (2012)

Energy Storage

Sun et al. (2012)

Flux Rope in NLFFF

Flux Rope in NLFFF

Zhao et al. (2016)

Many Modes of Eruption

CME Observation

Martens & Kuin (1989)

CME Observation

"The Perfect Storm": Carrington level event

Liu et al. (2014)

Formation of Flux Rope

FIG. 1.—Flux cancellation in a sheared magnetic field. The rectangle represents the solar photosphere, and the dashed line is the neutral line separating two regions of opposite magnetic polarity. (a) Initial potential field; (b) sheared magnetic field produced by flows along the neutral line; (c) magnetic shear is increased further due to flows toward the neutral line; (d) reconnection produces long loop AD and a shorter loop CB which subsequently submerges; (e) overlying loops EF and GH are pushed to the neutral line; (f) reconnection produces the helical loop EH and a shorter loop GF which again submerges.

van Ballegooijen & Martens (1989)

Formation of Flux Rope

"Tether-Cutting" Reconnection

Onset of Eruption

• Possible upper limit of magnetic energy & helicity

• May or may not require pre-eruption FR

 Competition between "hoop force" from energized core field and confinement of overlying field

• Trigger & driver: instability vs reconnection

• Conversion of magnetic energy to kinetic energy

Amari et al. (2018)

Kink Instability

- Twist greater than KI threshold => writhe
- Orientation wrt overlying field changes
- Equilibrium lost

Torus Instability

- Overlying field decays fast with height
- Hoop force becomes greater than confinement
- Equilibrium lost

Failed eruption + flux emergence + TI

Flux emergence + breakout reconnection + TI

Leake et al. (2014)

Magnetic Breakout

- Multipolar field + shearing needed
- No pre-existing FR required: formed during eruption
- Reconnection essential

Cirtain et al. (2007)

Fan-Spine Topology

Sympathetic Eruptions

Schrijver & Title (2011); Török et al. (2011); Titov et al. (2012)