COLLAGE 2019

Active Region Magnetic Fields I

Xudong Sun (UH/IfA) Apr 11 2019

Outline

- Crash course on flux emergence
- Flare/CME basics

Crash Course on Flux Emergence

See Cheung & Isobe (2014) for review

Flux Emergence: Two Dynamos?

- AR flux is highly cycle dependent; quiet Sun flux less so
- Are global & surface dynamo two different processes?

Flux Emergence: Continuous Scales

- Continuous power law: slope
 -1.85
- QS flux dominates: 10⁴ x AR!
- Continuous dynamo process with different Rossby numbers:

$$Ro = \frac{P_{\rm rot}}{\tau_{\rm conv}}$$

AR Flux Emergence Rate

Norton et al. (2017); Sun & Norton (2017)

Buoyant Rise of Flux Tubes

• Density deficiency due to increased magnetic field

$$p_i + \frac{B^2}{8\pi} = p_o$$

• Steep stratification leads to decreasing pressure scale height: flattening

$$H_p = \left(\frac{d\ln p}{dz}\right)^{-1} \sim 150 \text{ km } (z=0)$$

• Large field (super-equipartition) needed to rise: ~ 10 kG

Buoyant Rise of Flux Tubes

• Stratification unstable to convective perturbation near surface i.e., superadiabatic

$$\frac{\partial \rho_{\rm ad}}{\partial z} < \frac{\partial \rho}{\partial z}$$
, or $\frac{d \ln T}{d \ln p} \bigg|_{s} < \frac{d \ln T}{d \ln p}$

- Susceptible to various magnetic buoyancy instabilities
- Horizontal expansion needs to be suppressed: e.g. with twist

Twist and Writhe of Flux Tubes

- Large scale structure (small Ro) modulated by Coriolis force
- Can develop twist/writhe due to interaction with turbulence & kinetic helicity, i.e. Σ-effect (Longcope & Klapper 1997; Longcope et al. 1998)

$$H_m = \int_V \boldsymbol{A} \cdot \boldsymbol{B} dV = \frac{\Phi^2}{2\pi} (T_w + W_r)$$

• Helical kink instability; shear & twist as source of space weather

Twist and Writhe of Flux Tubes

Interaction with Convection

Interaction with surface convection & mass discharge

Cheung et al. (2010)

Flux Emergence Observation

HMI; AR 11130

Flux Emergence Observation

HMI; AR 11158

Q: Which AR is more likely to produce flare? AR 11158 or 11130?

Sun et al. (2012)

Energization of Corona

AR 11112: Topology change $\Delta E = 7 \times 10^{30}$ erg

AIA 211 and HMI radial flux: 2010-10-14 22:00

Tarr et al. (2014)

Q: Is AR flux emergence important to coronal heating?

Energization of Corona

"Emerging Dimming"

Zhang et al. (2012)

Flare/CME Basics

See Shibata & Magara (2011); Schrijver (2009) for review

A Spectacular Phenomenon

Flare & CME as One Process

The Solar Flare Myth

J. T. GOSLING

Synchronized evolution

Zhang et al. (2001)

Gosling (1993)

Driver of Space Weather

A Magnetically Driven Phenomenon

• Magnetic field is the only viable energy source

$$E \approx \frac{B^2}{8\pi} L^3 = 10^{33} \left(\frac{B}{10^3 \,\mathrm{G}}\right)^2 \left(\frac{L}{3 \times 10^9 \,\mathrm{cm}}\right)^2 \mathrm{erg}$$

- Gradual energy injection & storage
- Rapid release (~100 s): diffusion region is *local*

$$\tau_{\rm dif} \approx \frac{L^2}{\eta} = 10^{14} \left(\frac{L}{10^9 \,\mathrm{cm}}\right)^2 \left(\frac{T}{10^6 \,\mathrm{K}}\right)^2 \mathrm{s}$$
$$L \approx 10^3 \,\mathrm{cm}$$

• Global reconfiguration: via Lorentz force?

https://en.wikipedia.org/wiki/Magnetic_reconnection

CSHKP Model (or have you read the papers?)

"Standard" Flare Model in 2D

FLARE RIBBONS

Martens & Kuin (1989)

Energy Partition

• Woltjer's theorem: for closed system with same boundary and helicity, potential field has the lowest energy (see HW3 Q2)

• Magnetic free energy:
$$E_f = \int \frac{B^2}{8\pi} dV - \int \frac{B_p^2}{8\pi} dV$$

"Non-Potentiality"

Schrijver et al. (2008)

- Photosphere to low corona; near PIL (filament channel)
- Shear; twist
- Free energy E_p , E_p/E
- Electric current *j*
- Helicity *H*

Momentum Partition (?)

Table 2 Vertical momentum components, representative X-class flare with CME.

Item Figure 1	Phenomenon	Mass g	v km s ⁻¹	Δt s	Momentum $g cm s^{-1}$	Pressure dyne cm ⁻²
a	Primary (e ⁻) ^a	2×10^{11}	c/3	10	2×10^{21}	7×10^2
a	Primary (p ⁺ or H) ^a	1×10^{13}	2×10^{8}	10	1×10^{23}	3×10^{5}
<i>a</i> ′	Primary (waves)	-	c/3	10	1×10^{21}	3×10^2
b	Evaporation flow	10^{14}	500	10	2×10^{22}	2×10^{3}
b'	Radiation ^b	-	С	10	1×10^{19}	3
С	CME	1015	2000	100	2×10^{23}	?
d	Draining	10 ¹⁵	10	$\approx 10^4$	2×10^{21}	0.07
	Seismic wave ^c				8×10^{21}	

Hudson et al. (2012)

The Perfect Storm

The Perfect Storm

The Need to Go to 3D

Important effect in the 3rd dimension

