COLLAGE 2019

Solar Wind; Flux Emergence

Xudong Sun (UH/IfA) Apr 09 2019

Outline

- The magnetic solar wind
- Crash course on flux emergence

The Magnetic Solar Wind

Material partially from S. Bale's 2018 CPAESS summer school lecture

Parker's Solar Wind

• Momentum equation for steadily expanding, spherically symmetric corona:

$$v\frac{dv}{dr} + \frac{1}{\rho}\frac{dP}{dr} + \frac{GM_{\odot}}{r^2} = 0$$

• Isothermal, perfect gas (dT/dr = 0) & constant mass loss rate $(\rho vr^2 = C)$

$$\frac{dP}{dr} = \frac{RT}{\mu} \frac{d\rho}{dr}$$
$$\frac{1}{\rho} \frac{d\rho}{dr} = -\frac{1}{v} \frac{dv}{dr} - \frac{2}{r}$$

• Solving for:

$$(v^{2} - v_{c}^{2})\frac{1}{v}\frac{dv}{dr} = 2\frac{v_{c}^{2}}{r^{2}}(r - r_{c})$$
$$v_{c} = \sqrt{RT/\mu}, \ r_{c} = GM_{\odot}/2v_{c}^{2}$$

Parker (1958)

Parker's Solar Wind

• Solution:

$$\left(\frac{v}{v_c}\right)^2 - \ln\left(\frac{v}{v_c}\right)^2 = 4\ln\left(\frac{r}{r_c}\right) + 4\left(\frac{r}{r_c}\right) + C$$

In Situ Measurement

Neugebauer & Snyder (1965)

Lepri et al. (2013)

Alfvén Surface & Stream Interaction

• Alfvén surface: kinetic energy greater than magnetic energy

$$\frac{1}{2}\rho v^2 = \frac{B^2}{8\pi}$$

Occurs at a few tens of solar radii

 Stream (co-rotating) interaction region: faster SW stream catches up with slower stream and compresses plasma

Solar Wind Acceleration

- Fast wind: relatively uniform
- Slow wind: impulsive
- Minor ion species show enhanced acceleration

Cranmer (2009)

Solar Wind Temperature

- Minor ions selectively heated in direction perpendicular to B
- Different ion compositions
- Gap of 10 60 R_{sun} will be probed by Parker Solar Probe (PSP)

Bimodal Structure

Directly dependent of coronal field structure

McComas et al. (2008)

Constant Energy Flux

Magnetic Connectivity

Mapping of open field along Sun-Earth line

NSO/GONG

Streamer & Pseudo-Streamer

Flux Tube Expansion

Wang & Sheeley (1990)

f_s	$(\mathrm{km} \mathrm{s}^{-1})$
< 3.5	700
3.5–9	600
9–18	500
18–54	400
> 54	330

89

Wang-Sheeley-Arge (WSA) Model

Arge & Pizzo (2000); Arge et al. (2004)

The Critical Polar Field

- Coronal structure & f critically depends on dipole (polar) field
- Polar field not well observed

Sun et al. (2008)

SW Origins

Wave & Turbulence

- Alfvén wave damping
- Open field region: coronal holes

Reconnection

- Reconnection
- Close/open field boundary: coronal hole/ streamer edge; active region edge

Alfvén Waves & Streamer Blobs

AIA 17.1 nm

LASCO C3 difference

Wang et al. (2000)

CH Winds

- Ubiquitous outflow in coronal EUV lines with v > 10 km/s
- Corresponded well with open field "magnetic funnels"

SoHO/SUMER Ne VIII 77 nm in Polar CH

Tu et al. (2005)

CH Winds

Decayed AR turns into low-lat CH

Wang et al. (2010)

Non-CH Winds

- Outflows from edge of ARs based on EUV Doppler observation
- Combining magnetic modeling and spectral diagnostics

Brooks & Warren (2011)

The "S-Web" Model

Squashing Degree Based on HMI & PFSS

http://hmi.stanford.edu/QMap/

Parker Solar Probe (PSP)

- Repeated 7 Venus gravity assists to lower orbit to reach the Sun
- Switching between resonant and non-resonant Venus encounters to minimize mission duration
- Orbit phasing matched between flybys so that no deep space maneuvers are required
- Multiple solar encounters at various distances
- Solar distances not beyond Earth for a solar powered spacecraft

16-19 March 2015

Solar Probe Plus Critical Design Review

Courtesy S. Bale

Parker Solar Probe (PSP)

L1 Science Objectives	Sample Processes	Needed Measurements	Instruments
 Trace the flow of energy that heats and accelerates the solar corona and solar wind. Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind. Explore mechanisms that accelerate and transport energetic particles. 	 heating mechanisms of the corona and the solar wind; environmental control of plasma and fields; connection of the solar corona to the inner heliosphere. particle energization and transport across the corona 	 electric & magnetic fields and waves, Poynting flux, absolute plasma density & electron temperature, spacecraft floating potential & density fluctuations, & radio emissions energetic electrons, protons and heavy ions velocity, density, and temperature of solar wind e-, H+, He++ solar wind structures and shocks 	 FIELDS Magnetic Field Electric Field Electric/Mag Wave ISOIS Energetic electrons Energetic protons and heavy ions (10s of keV to ~100 MeV) SWEAP Plasma e-, H+, He++ SW velocity & temperature WISPR White light measurements of solar wind structures

PSP as Testbed for Models

MHD Prediction of 1st Perihelion With Alfvén wave driven SW

10/25/2018 10/25/2018 10/25/2018

Riley et al. (2019)

van der Holst et al. (2019)

Crash Course on Flux Emergence

See Cheung & Isobe (2014) for review

Flux Emergence: Two Dynamos?

- AR flux is highly cycle dependent; quiet Sun flux less so
- Are global dynamo & surface dynamo two different processes?

Flux Emergence: Continuous Scales

Harvey (1993); Hagenaar et al. (2003) Parnell et al. (2009); Thornton & Harvey

- Continuous power law: slope
 -1.85
- QS flux dominates: 10⁴ x AR!
- Continuous dynamo process with different Rossby numbers:

$$Ro = \frac{P_{\rm rot}}{\tau_{\rm conv}}$$

Buoyant Rise of Flux Tubes

• Density deficiency due to increased magnetic field

$$p_i + \frac{B^2}{8\pi} = p_o$$

- Steep stratification leads to decreasing pressure scale height
- Stratification unstable to convective perturbation in near surface layer

$$\frac{\partial \rho_{\rm ad}}{\partial z} < \frac{\partial \rho}{\partial z}$$
, or $\frac{d \ln T}{d \ln p} \bigg|_{s} < \frac{d \ln T}{d \ln p}$

ARs from Convection Zone

- Strong field strength needed to stay coherent: ~ 10 kG
- Easily undergo magnetic buoyancy instabilities
- Large scale structure (small *Ro*) modulated by Coriolis force
- Will develop twist due to interaction with turbulence & kinetic helicity (Long cope & Klapper 1997; Longcope et al. 1998)

Emerging Through Surface

Interaction with surface convection & mass riddance

Cheung et al. (2010)

Flux Emergence Simulation

Cheung et al. (2010)

Flux Emergence Simulation

Chen et al. (2017)

Flux Emergence Observation

HMI vector field

Sun et al. (2012)