COLLAGE 2019

Magnetic Field Structures over a Solar Cycle

Xudong Sun (UH/IfA) Apr 04 2019

Outline

- PFSS Model for coronal field
- Solar cycle
- Babcock-Leighton mechanism & surface flux transport

PFSS Model for Coronal Field

PFSS Model

Assuming lower corona is current free,
B can be expressed as a scaler potential

$$\boldsymbol{B} = -\nabla \boldsymbol{\Psi}$$

• **B** vector in spherical coord

$$B_{r} = -\frac{\partial \Psi}{\partial r}$$
$$B_{\theta} = -\frac{1}{r} \frac{\partial \Psi}{\partial \theta}$$
$$B_{\phi} = -\frac{1}{r} \frac{\partial \Psi}{\partial \phi}$$

Sun (2012)

• Coronal field governed by Laplace eq.

 $\nabla^2 \Psi = 0$

PFSS Model

• Inner boundary: photosphere radial field

$$\left. -\frac{\partial \Psi}{\partial r} \right|_{r=R_{\odot}} = B_r(\text{obs})$$

• Outer boundary: source surface where field becomes radial and open

$$\Psi\Big|_{r=R_s} = 0$$
$$R_s = 2.5R_{\odot}$$

• General solution of Laplace equation:

NSO/GONG

$$\Psi = \sum_{l=0}^{\infty} r^{-(l+1)} \sum_{m=-l}^{l} a_{lm} Y_{l}^{m}(\theta,\phi) + \sum_{l=0}^{\infty} r^{l} \sum_{m=-l}^{l} b_{lm} Y_{l}^{m}(\theta,\phi)$$

PFSS Model Solution

• Matching outer boundary

$$\sum_{l=0}^{\infty} R_s^{-(l+1)} \sum_{m=-l}^{l} a_{lm} Y_l^m(\theta, \phi) + \sum_{l=0}^{\infty} R_s^l \sum_{m=-l}^{l} b_{lm} Y_l^m(\theta, \phi) = 0, \text{ or, } a_{lm} = -R_s^{2l+1} b_{lm}$$

• Matching inner boundary

$$\sum_{l=0}^{\infty} (l+1)R_{\odot}^{-(l+2)} \sum_{m=-l}^{l} a_{lm}Y_{l}^{m}(\theta,\phi) - \sum_{l=0}^{\infty} lR_{\odot}^{l-1} \sum_{m=-l}^{l} b_{lm}Y_{l}^{m}(\theta,\phi) = B_{r}(R_{\odot},\theta,\phi)$$

• Use normalization properties of spherical harmonics

$$\oint d\Omega Y_l^m(\theta,\phi) Y_{l'}^{m'}(\theta,\phi) = \delta_{ll'} \delta_{mm'}$$

• Surface integral of observed field

$$(l+1)R_{\odot}^{-(l+2)}a_{lm} - lR_{\odot}^{l-1}b_{lm} = \oint d\Omega B_r(R_{\odot},\theta,\phi)Y_l^m(\theta,\phi)$$

PFSS Widget

https://tinyurl.com/pfss-wid

••• <>		Not Secure — spacephysics.ucla.edu	0	0 1 0
HOME Rotatable Potential Fields	Rotatable Simple Source Surface Field	ds Rotatable Realistic Source Surface Models	Realistic Source Surface Magnetic Map	
Potential Field: Rota	atable Realistic Sou	rce Surface Models		
This module allows you to examine the	e magnetic topology of realistic poten	tial field models.		
Data set: Input values Minimum dipole M Intermediate quadrupole Maximu Maximum case 3	Ainimum tilted dipole um case 1 Maximum case 2			
Dipole coefficients				x → Y
910, 911: -97.	61 37.36 Tm ³			
h ₁₁ :	69.21 Tm ³			Z
Quadrupole coefficients				
920, 921: -2.8	6 -6.91 Tm ³		The second second	
g ₂₂ :	-13.46 Tm ³			
h ₂₁ , h ₂₂ : 19.0	9 52.10 Tm ³	71		
Octupole coefficients				
930, 931: -161	1.62 -9.39 Tm ³			
932, 933: 29.4	19 76.96 Tm ³			
h ₃₁ , h ₃₂ : -65	37 -16.32 Tm ³			
haa:	5 18 Tm ³			
View configuration	-3.18		A A A A A A A A A A A A A A A A A A A	
Latitude:	0.0 •			
Longitude:	90.0 •	"		
View angle:	0.0 °			
Source surface radius:	2.5 R _☉			
Reset View				
	Calculate Help This o	ption uses coefficients from the Wilcox Solar Ob	servatory (WSO). You can fill in the WSO coeffici	ients up to order 3. Select the

This option uses coefficients from the Wilcox Solar Observatory (WSO). You can fill in the WSO coefficients up to order 3. Select the **Input values** option to evaluate the data input by you, or one of the other six options to display a set of WSO coefficients for different solar configurations. The source surface around the Sun is an imaginary radius at which magnetic field lines go radial. Usually the source surface is taken to be in a range of 2 to 3 times the radius of the Sun, R_{\odot} . You can vary solar radii value from a

minumum value of 1 to a maximum value of 6. In the display, gray lines are closed field lines, red lines are open field lines (inward), and blue lines are open field lines (outwards). Small black circles map out the neutral line on the source surface, dividing the outward radial fields there from the inward radial fields. Regions with neither closed nor open field lines plotted here are regions with closed field lines that do not reach the source surface.

Version 1.0.13 | Copyright © 2015-2018 The Regents of the University of California. All rights reserved. | Terms of Use | Privacy Statement | StatCounter

Utility of PFSS Model

Mapping Solar Wind: WSA Model

Sun (2012)

$$v \propto f^{-1} = \frac{B_r(R_s)R_s^2}{B_r(R_\odot)R_\odot^2}$$

Topology Analysis for Sympathetic Flares

Titov et al. (2012)

Sunspot Number

Hevelius 3-16 May 1644

SDO/HMI 7 January 2014

Butterfly Diagram

Defining cycle minimum/maximum

Hathaway (2015)

Historic View

Total Solar Irradiance

G. Kopp, 07 Feb. 2019

Courtesy G. Kopp

Spectral Irradiance Variability

X-Ray View Over a Cycle

Credit: Yohkoh/ISAS/LMSAL/NAOJ/U. Tokyo/NASA

Cycle Parameters

Hathaway (2015)

Spörer's, Hale's, & Joy's Law

Spörer's Law

Evolution of Magnetic Field

Hathaway (2015)

Magnetic Butterfly Diagram

Spörer's Law; N/S asymmetry; polarity reversal

Hathaway (2015)

Minimum Phase

SoHO/MDI, EIT 19.5 nm

Ascending Phase

SDO/HMI, AIA 19.3 nm

Maximum Phase

SDO/HMI, AIA 19.3 nm

Declining Phase

SDO/HMI, AIA 19.3 nm

Magnetic Topology

NSO/GONG

Total Solar Eclipse Images

Solar Wind Over a Cycle

 $\tan \theta \sim |k_{11}|/|k_{10}|$

Babcock-Leighton Mechanism & Surface Flux Transport

Babcock-Leighton Mechanism

B-L mechanism

Sanchez et al. (2014)

Surface Flux Transport

- B_r evolution within a thin spherical shell near surface
- Induction equation with source & diffusion

$$\frac{\partial B_r}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})_r + \kappa \nabla^2 B_r + S(\theta, \phi, t)$$

or,

$$\frac{\partial B_r}{\partial t} = -\omega(\theta)\frac{\partial B_r}{\partial \phi} - \frac{1}{R_{\odot}\sin\theta}\frac{\partial}{\partial \theta}[\sin\theta v(\theta)B_r] + \frac{\kappa}{R_{\odot}^2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial B_r}{\partial \theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 B_r}{\partial \phi^2}\right] + S(\theta,\phi,t)$$

- Surface flow: differential rotation & meridional flow; measurable
- Diffusion: supergranular dispersion, etc.; empirically determined
- Source: flux emergence; measurable

Surface Flux Transport

- Toroidal field (sunspot) conversion to poloidal field (dipole)
- Essential ingredient: Hale's law, Joy's law, & cross equatorial cancellation

Active Region Flux Dispersal

HMI CR 2102-2104

Active Region Flux Dispersal

SFT Model of Dipole Contribution

Jiang et al. (2019)

Polar Field

Polar Field Reversal

https://github.com/mbobra/plotting-polar-field

Application on Active Stars

Emergence rate 10 x + rotation period 6 d = polar field 30 x

Courtesy S. Solanki

Schrijver & Title (2001)

Cycle Prediction Based on B-L

Poloidal field (polar field at min) of Cycle N > Toroidal Field (SSN) of Cycle N+1

Upton & Hathaway (2014)

Constructing Better Synoptic Maps

Near-Real-Time Data Assimilation + Surface Flux Transport

Courtesy M. DeRosa