COLLAGE 2019

Large-Scale Solar Magnetic Fields

Xudong Sun (UH/IfA) Apr 02 2019

Outline

- Solar features & magnetic origin
- Photospheric magnetic field maps
- Potential field model of quiescent corona

Solar Feature & Magnetic Origin

A Steep Stratification

 Different spectral lines probe different "layers" of solar atmosphere

- Large contrast in spatial and temporal scales
- Rich information resides in specto-polarization signals as well as emission morphology

The Multi-Wavelength Sun

Photosphere: Full Disk View

SDO/HMI Fe | 617.3 nm; 1" resolution

Photosphere: High Resolution

Liu et al. (2016)

Chromosphere: On Disk

Chromosphere: Off Limb

Hinode/SOT Ca II H line 396.9 nm; 0.2" resolution

Okamoto et al. (2016)

Magnetic Connectivity: Sunspot

Magnetic Connectivity: Quiet Sun

Wedemeyer-Böhm et al. (2008)

When drawn to scale

Corona: Active Region Loop

Corona: Coronal Hole

SDO/AIA 19.3 nm; 1.0 MK

Polar coronal hole

Low-latitude coronal hole

Filament

Magnetic Connectivity: Cartoon

Magnetic Connectivity: Model

Magnetic Connectivity: Heliosphere

Parker spiral

Heliospheric current sheet

http://www.ieap.uni-kiel.de/et/people/heber/summerschoool/propagation.pdf

https://en.wikipedia.org/wiki/Heliospheric_current_sheet

Photospheric Magnetic Maps

Observing B with Zeeman Effect

• For weak fields, Stokes profiles depend on field geometry

$$Q \propto B^{2} \sin^{2} \gamma \cos 2\phi = B_{t}^{2} \cos 2\phi$$
$$U \propto B^{2} \sin^{2} \gamma \sin 2\phi = B_{t}^{2} \sin 2\phi$$
$$V \propto B \cos \gamma = B_{l}$$

• Sensitivity of transverse field (B_t) is lower than longitudinal field (B_l)

$$\frac{Q}{I} < \frac{V}{I}$$

Longitudinal Magnetograms

WSO; Fe I 525.0/524.7 nm; 3' resolution 22 × 11 pixels; 2 per day

HMI; Fe I 617.3 nm; 1" resolution 4096 × 4096; 1920 per day

Synoptic Map

Synoptic Map & Heliographic Coord

 $B_r = B_l/\mu$

Nuisances

Synoptic

From Wikipedia, the free encyclopedia

Not to be confused with synopsis (disambiguation).

Synoptic is derived from the Greek words $\sigma \dot{v} (syn, "together")$ and $\delta \psi \varsigma (opsis, "view")$, and describes observations that give a broad view of a subject at a particular time. Specific uses include:

STEREO doesn't have magnetograph...

- Misnomer: not instantaneous snapshot
 - Different parts reflect conditions of different time
 - New emergence west of CMP not captured
 - Flux imbalance as half a bipole rotes on or off disc

Vector Magnetograms

Choices, choices

- Cadence
- Field of view
- Duty cycle
- Spatial resolution
- Spectral resolution

Azimuthal Ambiguity

• 180-deg azimuthal ambiguity inherent to Zeeman effect

 $Q \propto B_t^2 \cos 2\phi = B_t^2 (\cos^2 \phi - \sin^2 \phi)$ $U \propto B_t^2 \sin 2\phi = 2B_t^2 \sin \phi \cos \phi$

• Requires additional model, e.g. minimizing "energy" (Metcalf 1996):

$$E = \sum \left(\lambda_1 \left| J_z \right| + \lambda_2 \left| \nabla \cdot \boldsymbol{B} \right| \right)$$

• Weak field azimuth is noisy

Vector Projection

- Inversion provides longitudinal field (B_i) from V & transverse field (B_t) from Q, U
- Usually we are more interested in radial \bullet (B_r) and horizontal (B_h) components

$$\begin{pmatrix} B_r \\ B_{\theta} \\ B_{\phi} \end{pmatrix} = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \begin{pmatrix} B_{\xi} \\ B_{\eta} \\ B_{\zeta} \end{pmatrix},$$

- Relevant geometric parameters: p-angle, b-angle, longitude φ , latitude λ
- We are mixing signals with different lacksquarenoise characteristics (e.g., at poles)

 $-\cos\lambda [\sin b \cos p \cos \phi - \sin p \sin \phi] + \sin\lambda [\cos b \cos p],$ $-\sin\lambda [\sin b \cos p \cos \phi - \sin p \sin \phi] - \cos\lambda [\cos b \cos p]$ Sun (2013) $\sin \lambda [\sin b \sin p \cos \phi + \cos p \sin \phi] + \cos \lambda [\cos b \sin p],$ $\sin b \sin p \sin \phi + \cos p \cos \phi$ $\sin\lambda\cos b\cos\phi - \cos\lambda\sin b,$ $\sin b \cos p \sin \phi + \sin p \cos \phi$, $= \cos \lambda \cos b \cos \phi + \sin \lambda \sin b$ $-\cos b \sin \phi$ Ι $k_{23} =$ ||11 Ш Ш Ш k_{13} k_{11} k_{21} k_{33} k_{12} k_{22} k_{32} k_{31}

 $\cos \lambda [\sin b \sin p \cos \phi + \cos p \sin \phi] - \sin \lambda [\cos b \sin p],$

П

The "Hedgehog"

HMI vector field sequence

Courtesy K. Hayashi

More Nuisances

Rugged "formation" height

Magnetic "filling factor"

Courtesy S. Solanki

Potential Field of Quiescent Corona

Lorentz Force & Magnetic Pressure

• MHD momentum equation:

$$\rho \frac{d\boldsymbol{v}}{dt} = -\nabla p + \rho \boldsymbol{g} + \boldsymbol{j} \times \boldsymbol{B}$$

• Lorentz force: magnetic pressure gradient + tension force

$$\frac{1}{c}\boldsymbol{j} \times \boldsymbol{B} = \frac{1}{4\pi}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} = -\nabla \frac{B^2}{8\pi} + \frac{(\boldsymbol{B} \cdot \nabla)\boldsymbol{B}}{4\pi}$$

• Relative importance of plasma compared to field: plasma β

$$\beta = \frac{p}{p_{\text{mag}}} = \frac{p}{B^2/(8\pi)}$$

Reign of Magnetic Field: Plasma ß

Gary (2001)

Plasma β & Force-Free Field

• Quasi-static ($v \sim 0$); low β

$$\boldsymbol{j} \times \boldsymbol{B} = \boldsymbol{0}$$

or

 $(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} = 0$ $\nabla \times \boldsymbol{B} = \alpha \boldsymbol{B}$

current (anti-)parallel to field

 Potential field α = 0; linear force-free field α is constant:

$$\nabla^2 \boldsymbol{B} + \alpha^2 \boldsymbol{B} = 0$$

• Lowest energy state

Gary (2001)

Electric Currents; Potential Field

• Electric currents exist as twist, shear, or discontinuity in **B**

$$\int j \cdot \mathrm{d}S \propto \int \nabla \times \boldsymbol{B} \cdot \mathrm{d}S = \oint \boldsymbol{B} \cdot \mathrm{d}l$$

• Large-scale field is mostly current free, i.e. potential field (PF)

$$\nabla \times \boldsymbol{B}_p = 0$$

• Generally speaking, PF is the "lowest energy state"; "free" energy

$$E_f = \int \frac{B^2}{8\pi} - \frac{B_p^2}{8\pi} \mathrm{d}V$$

SoHO/EIT C3

PFSS Model

Assuming lower corona is current free,
B can be expressed as a scaler potential

$$\boldsymbol{B} = -\nabla \boldsymbol{\Psi}$$

• **B** vector in spherical coord

$$B_{r} = -\frac{\partial \Psi}{\partial r}$$
$$B_{\theta} = -\frac{1}{r} \frac{\partial \Psi}{\partial \theta}$$
$$B_{\phi} = -\frac{1}{r} \frac{\partial \Psi}{\partial \theta}$$

Sun (2012)

• Coronal field governed by Laplace eq.

 $\nabla^2 \Psi = 0$

PFSS Model

• Inner boundary: photosphere radial field

$$\left. -\frac{\partial \Psi}{\partial r} \right|_{r=R_{\odot}} = B_r(\text{obs})$$

• Outer boundary: source surface where field becomes radial and open

$$\Psi\Big|_{r=R_s} = 0$$
$$R_s = 2.5R_{\odot}$$

• General solution of Laplace equation:

NSO/GONG

$$\Psi = \sum_{l=0}^{\infty} r^{-(l+1)} \sum_{m=-l}^{l} a_{lm} Y_{l}^{m}(\theta, \phi) + \sum_{l=0}^{\infty} r^{l} \sum_{m=-l}^{l} b_{lm} Y_{l}^{m}(\theta, \phi)$$

PFSS Model

• Coefficients can be obtained through spherical harmonics decomposition

$$k_{lm} \propto \int d\Omega Y_l^m(\theta, \phi) B_r \Big|_{r=R_\odot}$$

- Coefficients contain important information, e.g., dipole reverses sign
- Captures most topological features: current sheet location; streamer extent; coronal hole size/location

• Open field as solar wind sources

NSO/GONG

PFSS Widget

https://tinyurl.com/pfss-wid

		Not Secure — spacephysics.ucla.edu	Č	• • • +
HOME Rotatable Potential Fields R	otatable Simple Source Surface Fields	Rotatable Realistic Source Surface Models	Realistic Source Surface Magnetic Map	
Potential Field: Rotatable Realistic Source Surface Models				
This module allows you to examine the magnetic topology of realistic potential field models.				
Data set: Input values Minimum dipole Min Intermediate quadrupole Maximum Maximum case 3	nimum tilted dipole n case 1 Maximum case 2			
Dipole coefficients				X→Y
910, 911: -97.61	1 37.36 Tm ³			
h ₁₁ :	69.21 Tm ³			Z
Quadrupole coefficients				
920, 921: -2.86	-6.91 Tm ³		The second second	
g ₂₂ :	-13.46 Tm ³			
h ₂₁ , h ₂₂ : 19.09	52.10 Tm ³			
Octupole coefficients				
<mark>930, 931: -161.6</mark>	52 -9.39 Tm ³			
9 ₃₂ , 9 ₃₃ : 29.49	76.96 Tm ³			
h ₃₁ , h ₃₂ : -65.37	7 -16.32 Tm ³			
h ₃₃ :	-5.18 Tm ³			
View configuration				
Latitude:	0.0 •			
Longitude:	90.0 °			
View angle:	0.0 •			
Source surface radius:	2.5 R _O			
Reset View				
	Calculate Help			
	This opt	ion uses coefficients from the Wilcox Solar Ob	servatory (WSO). You can fill in the WSO coef	fficients up to order 3. Select the

with closed field lines that do not reach the source surface.

Input values option to evaluate the data input by you, or one of the other six options to display a set of WSO cofficients for different solar configurations. The source surface around the Sun is an imaginary radius at which magnetic field lines go radial. Usually the source surface is taken to be in a range of 2 to 3 times the radius of the Sun, R_{\odot} . You can vary solar radii value from a minumum value of 1 to a maximum value of 6. In the display, gray lines are closed field lines, red lines are open field lines (outwards). Small black circles map out the neutral line on the source surface, dividing the outward radial fields there from the inward radial fields. Regions with neither closed nor open field lines plotted here are regions

Version 1.0.13 | Copyright © 2015-2018 The Regents of the University of California. All rights reserved. | Terms of Use | Privacy Statement | StatCounter

PFSS Model at Solar Min & Max

