Atomic Spectral Lines

Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot, USA

Hale COLLAGE, Boulder, Feb 18, 2016

- How do we get absorption and emission lines in the spectrum?
- Atomic line- and continuum transitions
- Non-LTE radiative transfer in atomic models
- Real world examples:
 - Ca I H& K lines
 - HeI 1083 nm line

- **1802** Wollaston was the first to observe dark gaps in spectrum: spectral lines.
- 1814 Fraunhofer rediscovers lines. Assigns names that we still use, e.g., C (Hα), D (Na I), F (Hβ), G (CH molecules), and H (Ca I).

The spectrum at much better resolution

Remember: Eddington-Barbier approximation

Limb Darkening Explained

Can we now explain the Darkening in the Cores of Spectral Lines?

Explanation of Absorption Lines in the Spectrum

In the UltraViolet the Spectral Lines are in Emission

Explanation of Emission in Spectral Lines

Explanation of the Shape of the Call Resonance Lines

$H\alpha$ Spectral Line

Image of the Sun in the light of ${\rm H}\alpha$

 $\Delta E = h\nu = \frac{hc}{\lambda}$

 $\Delta E = h\nu = \frac{hc}{\lambda}$

 $\Delta E = h\nu = \frac{hc}{\lambda}$

Radiative bound-bound Transitions

Collisional bound-bound Transitions

Radiative bound-free Transitions

Collisional bound-free Transitions

Absorption and Emission Coefficients for bound-bound Transitions

Spontaneous emission $j \rightarrow i$ **:**

$$j_{\nu}^{\mathrm{spont}} = n_j (A_{ji} h \nu_{ij} / 4\pi) \phi_{\nu}$$

Stimulated emission $j \rightarrow i$:

$$j_{\nu}^{\text{stim}} = n_j (B_{ji} h \nu_{ij} / 4\pi) \phi_{\nu} I_{\nu}, \qquad A_{ji} = (2h \nu^3 / c^2) B_{ji}$$

Absorption $i \rightarrow j$:

$$\alpha_{\nu} = n_i (B_{ij} h \nu_{ij} / 4\pi) \varphi_{\nu}, \qquad g_i B_{ij} = g_j B_{ji}$$

Transfer equation:

$$\begin{aligned} \frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} &= j_{\nu}^{\mathrm{spont}} + j_{\nu}^{\mathrm{stim}} - \alpha_{\nu}I_{\nu} \\ &= n_{j}(A_{ji}h\nu_{ij}/4\pi)\phi_{\nu} - h\nu_{ij}/4\pi\phi_{\nu}(n_{i}B_{ij} - n_{j}B_{ji})I_{\nu} \end{aligned}$$

Source function:

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = \frac{n_j A_{ji}}{n_i B_{ij} - n_j B_{ji}}$$
$$= \frac{2h\nu_{ij}^3}{c^2} \frac{n_j}{g_j/g_i n_i - n_j}$$
$$= (1 - \epsilon)\overline{J} + \epsilon B_{\nu}$$

$$\epsilon \equiv \frac{C_{ji}}{C_{ji} + A_{ji} + B_{ji}\overline{J}}; \qquad \overline{J} \equiv \int J_{\nu}\phi_{\nu} \mathrm{d}\nu; \qquad B_{\nu} \equiv \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$

Radiative excitation

$$\begin{split} R_{ij} &= B_i j \frac{h\nu}{4\pi} \int d\Omega \int \frac{d\nu}{h\nu} I_{\nu} \phi_{\nu} \\ &= B_i j \overline{J}; \qquad \qquad \overline{J} \equiv \frac{1}{4\pi} \int d\Omega \int d\nu I_{\nu} \phi_{\nu} \end{split}$$

Radiative de-excitation

$$\begin{aligned} R_{ij} &= Aji + B_{ji} \frac{h\nu}{4\pi} \int \mathrm{d}\Omega \int \frac{\mathrm{d}\nu}{h\nu} I_{\nu} \phi_{\nu} \\ &= A_{ji} + B_{ji} \overline{J} \end{aligned}$$

Basic Equation: Statistical Equilibrium

Consider and atom (or molecule) with levels i = 0, ..., N - 1. Statistical equilibrium for level i:

The set of equations for all levels forms a, generally non-linear, and non-local, set of equations for the population numbers n_i

Complicated Termdiagram for Magnesium

Ingredients for Reproducing the Ca I H&K spectrum

Atmospheric Model:

Solve Equations for radiative transfer and statistical equilibrium simultaneously.

Collisional and Radiative Excitation in a realistic Case

Source function Ca I K line (Non-LTE)

Full disk images of He I equivalent width and B_{\parallel}

Full disk images of HeI EQW and Fe XI 19.3 nm

Line profiles of the He I 1083 nm triplet

The He I 1083.0 nm line: chromospheric?

The He I 1083.0 nm termdiagram

The He I 1083.0 nm termdiagram, triplet system

EUV irradiation from Corona populates triplet levels

The HeI 1083.0 nm contribution function

Contribution function:

$$C \equiv S(\tau) e^{-\tau} \frac{d\tau}{dh}$$

Han Uitenbroek/NSO Atomic Spectral Lines

HeI Line contribution function

Line contribution function:

$$S_{\text{tot}} = \frac{(\eta_l + \eta_c)}{(\chi_l + \chi_c)}$$
$$C = \left[\frac{\eta_l}{(\chi_l + \chi_c)} + \frac{\eta_c}{(\chi_l + \chi_c)}\right] e^{-\tau} \frac{d\tau}{dh}$$

HeI Line contribution function with irradiation

• Molecular line formation

Details of the Call K line

Back

Voigt Functions

Back