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Solutions to the RTE: Milne-Eddington Approximation

a

Radiative Transfer Equation: -
dTt,

K(I - S)

Polarization due to Zeeman effect.
Let’'s assume: The elements of K are constant: K = K

S (G 50 (B0 0

Then: f(O) — / G_KOTCKO(go i ngc)dTC = 50 —|- Ko_lgl
0

is the Unno-Rachkovsky solution to the RTE and it is analytical in nature!

I(0) = So + A" 'nr(nf + p + P + P3)S1
Q(0) = —A  ning + ni(nvpu — nupv) + po(ngpg + nupy + nvev)]Si
U(0) = —A~ [ninu + ni(napv — nvpe) + pu(nepg + nupu +nvev))]
U(0) = =A™ [ninv +ni(nupg — ngpu) + pv(ngpq + nupy +nvev)] St

with: A =ni(nf —nd —ni — i + 0o + 06 + ov) — (Ngre + nuey +1vev)?



Solutions to the RTE: Milne-Eddington Approximation

Model Parameters:

Line-to-continuum absorption: no
Doppler width: AAp

Damping parameter: a

Magnetic field: B, O, ¢

Source function: So, S1

LOS velocity: vios

Magnetic filling factor: a
Macroturbulent velocity: vmac

No thermodynamical
information

No velocity gradients
SO no asymmetries

NG

No magnetic field
gradients

If you want to synthesize spectral lines in a Milne-Eddington atmosphere:

http: / /www.iac.es/ proyecto/inversion/online /milne_code/milne.php



http://www.iac.es/proyecto/inversion/online/milne_code/milne.php

Solutions to the RTE: Local Thermodynamical Equilibrium

LTE hypothesis: the plasma is in thermodynamic equilibrium at local
values of temperature and density. Hence:

+ Maxwellian distribution of velocities

+ Saha and Boltzmann give the populations of different atomic species

+ Kirchhoff’s Law applies: j = By(T) (1, N, nu, nv)*

Absorption profiles have the same shape as emission profiles = complete redistribution of frequencies

+ Also assumes hydrostatic equilibrium and Zeeman induced polarization.

And the RTE still looks like this:
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Solutions to the RTE: Local Thermodynamical Equilibrium

Model atmosphere:

temperature: T(z)

pressure: P(z)

LOS velocity: vios(z)
Magnetic field: B(z), 6(z), d(z)
Macroturbulent velocity: vimac
Macroturbulent velocity: vimic

+ 9 physical quantities
+ stratified atmosphere:
9 x Nz free model parameters
+ Too many free parameters!
+ Need to constrain stratification
to a limited number of nodes
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Spectral Line Inversions

Forward modeling;:

Set of physical parameters
(L. Eolvios, B

Reasonable assumptions
(LTE, Milne-Eddington, Zeeman...)

Solve Radiative Transter Eq.

Stokes profiles

(L LN

Inverse problem:

given a set of Stokes profiles (data!!),
what are the physical conditions in the atmosphere?




Spectral Line Inversions
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(from Vitticchié et al, 2011)



Spectral Line Inversions: General Problem
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Spectral Line Inversions: Local Thermodynamic Equilibrium
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Spectral Line Inversions: Milne-Eddington Approximation
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Spectral Line Inversion Methods

[et's assume we know how to solve the RTE.

Inversion methods

Levenberg-Marquardt methods
(least squares fitting)

Principal Component Analysis techniques
(pattern recognition)




Spectral Line Inversions: the merit function

Let’s assume our model atmosphere is characterized by a series of Np
parameters, a.

The solution to the RTE in the model a gives us a set of synthetic Stokes profiles,
which we can compare to the observed ones. We can measure the difference
using a merit function:

o Nif S5 () — ()] 2w
S A

Where the number of degrees of freedom: Nf = Ns x Na - Np

[syn and I°bs are the synthetic and observed Stokes profiles
ws are some weighting factors (related to measurement error).
The sums are over wavelength and Stokes parameters.



Spectral Line Inversions: the merit function

e e e

ZZ IOb“ ~ ()] %w?
X2 is a hyper-surface of N, dimensions.

[t quantifies the goodness of the fit
(the distance between the observed and synthetic Stokes vector)
with one number!

The whole inversion problem boils down

to minimizing x?




Spectral Line Inversions: Levenberg-Marquardt Techniques

The problem boils down to the minimization of x?.

The first derivative is given by:

oIV ()
G ]\%ZZ ) Iaya( ) i=0,..., Np)
S A Z

And the second derivative of x? is given by:

9 O™ (N) O (A) | tpoym 3 _ pobo ] 2L
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When close to the minimum of x2, we can expect [I$y" - [obs] = (
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Spectral Line Inversions: Levenberg-Marquardt Techniques

Let’s assume the model a is close to the minimum of x2, so there is a
perturbation da that takes us directly to the minimum.
We can use a quadratic approximation, such that:

dmin dcurrent

P

Y’(a+6a) =~ x2(a) + dat (Vyx? + H'éa)

sohon - L 0°x° is half the Hessian matrix
Y 20a;0a; (dimensions Np x Np)




Spectral Line Inversions: Levenberg-Marquardt Techniques

When one is really close to the minimum, the second order approximation is
adequate, and we can equate to zero the term in parenthesis:

(Vx?+H'da) =0 — dba=—H’ _1VX2 This mvolffes mver.tmg
the Hessian matrix!!

thus we obtain a better approximation to the minimum of x?by shifting in the
parameter space an amount Oa.

When we're far from the minimum, we can get closer to it following
the gradient (first order approximation):

ba = kVy’ with k small enough!



Spectral Line Inversions: Levenberg-Marquardt Techniques

Marquardt had two insights:

+ The diagonal elements of the Hessian matrix give us a sense of what
good values for k could be (it's a dimensional argument).

X
- : fudge factor A -
5CLZ' — V X > da; = X2

+ The two methods can be combined into one equation, that allows
to vary smoothly between the gradient and the Hessian approaches:

VX2 1 Hoa=20 where B — (1+X) i te=7
H; if § £

A1? = gradient (first order) method
Al | = hessian (second order) method



Spectral Line Inversions: Levenberg-Marquardt Techniques

Evaluate x?(aini) for the initial guess model
Take modest value of A (A=103)
Solve equation for da

Evaluate x%(a+0a)

If ¥2(a+da) = x2(a)
— Do not update a
= Increase A: (Asew, — AT10)

If x?(a+0a) < x2(a)
-+ Dleercase AL, . — A/ 10)
— Update a: apew = a+0a

Stop when x? barely decreases once or twice in a row.

This algorithm is explained in detail in “Numerical Recipes” by Press et al. !



Spectral Line Inversions: Levenberg-Marquardt Techniques
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Spectral Line Inversions: Levenberg-Marquardt Techniques
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Levenberg-Marquardt Techniques: Issues

H can be quasi-singular due to different sensitivity of x? to the various
model parameters. But it has to be inverted!

Singular Value Decomposition methods:
H is real and symmetric=3 Y such thatt H=YTWYand YYT=YTY=1

SOH!1=YTW1Y

If Wi || = weset1/Wx =0, so ax does not contribute to the model perturbation.

Global vs. local minima of x?2

3 2 14 74
Levenberg-Marquardt techniques can lead X~ “surface

to local (rather than global) minima depending
on the location of the initial guess

¢ Initial guess
O Solution




Principal Component Analysis (PCA) Techniques

Let’s assume we have a set of observations S  — Stokes vector (LQ,U,V)
) : N — wavelengths
Sij:Sj(Ai), ZZl,...,N; jZl,...,M M —pixels

They are independent realizations of the Stokes profile S(A), so the average:
M
S(\) = %Zsij s
j=1

We can define a covariance matrix:
M

e Z[Sil — S(N)][Sji = S\, =1 N real and symmetric!
=i

Which can be diagonalized by an orthogonal transformation:

Cru e where f¥ are the eigenvectors that
form a basis for the residual S;(A) - S(A)
So that:
N
S 50— chg

k=1



Principal Component Analysis (PCA) Techniques
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Principal Component Analysis (PCA) Techniques

Build a complete database Determine a good set of

of Stokes profiles

Calculate the Decompose observations
eigen-profiles of the database on the eigen-basis

For each S;i(Ax) in the database compare observations
eigen-coefficients ¢

Principal Components

calculate eigen-coefficients ¢

Lo o
s

For each observation j
choose model i
that minimizes d;;

d; = PCA distance between model i and observation j
index k sums over truncated set of eigen-coetficients




Principal Component Analysis: Pros and Cons

Pros

- fast (searches best fit in a pre-built database of models)
- stable (always finds best fit: no problems of local minima)
» model independent (universal search /minimization algorithm)

Cons

* no solution refinement (can be fixed by increasing the density of the
database)

» database can become unmanageably large (dimensionality of
parameter space, parameter ranges; partial mitigation from optimally
sampling the parameter space)

All PCA stuff is from Roberto Casini



Spectral line inversions from HMI
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Spectral line inversions from HMI

Courtesy: R. Bogart and K. Hayashi



