Hale Collage

Today

* Simple solutions to the RTE
* Milne-Eddington approximation
\% LTE solution
\therefore The general inversion problem
\therefore Spectral line inversion codes
\% Levenberg-Marquardt techniques
* Principal Component Analysis

Solutions to the RTE: Milne-Eddington Approximation

Radiative Transfer Equation:

$$
\frac{d \vec{I}}{d \tau_{c}}=\mathbf{K}(\vec{I}-\vec{S})
$$

Let's assume:

$$
\begin{aligned}
& \text { Polarization due to Zeeman effect. } \\
& \text { The elements of } K \text { are constant: } K=K_{0} \\
& \vec{S}=\left(S_{0}+S_{1} \tau\right)(1,0,0,0)^{\mathrm{T}}
\end{aligned}
$$

$$
\vec{I}(0)=\int_{0}^{\infty} e^{-\mathbf{K}_{\mathbf{0}} \tau_{c}} \mathbf{K}_{\mathbf{0}}\left(\vec{S}_{0}+\vec{S}_{1} \tau_{c}\right) d \tau_{c}=\vec{S}_{0}+\mathbf{K}_{\mathbf{0}}^{-1} \vec{S}_{1}
$$

is the Unno-Rachkovsky solution to the RTE and it is analytical in nature!

$$
\begin{aligned}
& I(0)=S_{0}+\Delta^{-1} \eta_{I}\left(\eta_{I}^{2}+\rho_{Q}^{2}+\rho_{U}^{2}+\rho_{V}^{2}\right) S_{1} \\
& Q(0)=-\Delta^{-1}\left[\eta_{I}^{2} \eta_{Q}+\eta_{I}\left(\eta_{V} \rho_{U}-\eta_{U} \rho_{V}\right)+\rho_{Q}\left(\eta_{Q} \rho_{Q}+\eta_{U} \rho_{U}+\eta_{V} \rho_{V}\right)\right] S_{1} \\
& U(0)=-\Delta^{-1}\left[\eta_{I}^{2} \eta_{U}+\eta_{I}\left(\eta_{Q} \rho_{V}-\eta_{V} \rho_{Q}\right)+\rho_{U}\left(\eta_{Q} \rho_{Q}+\eta_{U} \rho_{U}+\eta_{V} \rho_{V}\right)\right] S_{1} \\
& U(0)=-\Delta^{-1}\left[\eta_{I}^{2} \eta_{V}+\eta_{I}\left(\eta_{U} \rho_{Q}-\eta_{Q} \rho_{U}\right)+\rho_{V}\left(\eta_{Q} \rho_{Q}+\eta_{U} \rho_{U}+\eta_{V} \rho_{V}\right)\right] S_{1}
\end{aligned}
$$

with:

$$
\Delta=\eta_{I}^{2}\left(\eta_{I}^{2}-\eta_{Q}^{2}-\eta_{U}^{2}-\eta_{V}^{2}+\rho_{Q}^{2}+\rho_{U}^{2}+\rho_{V}^{2}\right)-\left(\eta_{Q} \rho_{Q}+\eta_{U} \rho_{U}+\eta_{V} \rho_{V}\right)^{2}
$$

Solutions to the RTE: Milne-Eddington Approximation

Model Parameters:
Line-to-continuum absorption: η_{0}
Doppler width: $\Delta \lambda_{D}$
Damping parameter: a
Magnetic field: B, θ, ϕ
Source function: S_{0}, S_{1}
LOS velocity: vLOS

No thermodynamical information

No velocity gradients
so no asymmetries

$$
\mathrm{NCP}=0
$$

No magnetic field gradients

If you want to synthesize spectral lines in a Milne-Eddington atmosphere:
http://www.iac.es/proyecto/inversion/online/milne_code/milne.php

Solutions to the RTE: Local Thermodynamical Equilibrium

LTE hypothesis: the plasma is in thermodynamic equilibrium at local values of temperature and density. Hence:

* Maxwellian distribution of velocities
* Saha and Boltzmann give the populations of different atomic species
* Kirchhoff's Law applies: $\vec{j}=B_{v}(T)\left(\eta_{\mathrm{I}}, \eta_{\mathrm{Q}}, \eta_{\mathrm{U}}, \eta_{\mathrm{V}}\right)^{\mathrm{T}}$

Absorption profiles have the same shape as emission profiles \Rightarrow complete redistribution of frequencies

* Also assumes hydrostatic equilibrium and Zeeman induced polarization.

And the RTE still looks like this:

$$
\frac{d}{d z}\left(\begin{array}{l}
I \\
Q \\
U \\
V
\end{array}\right)=-\left(\begin{array}{cccc}
\eta_{I} & \eta_{Q} & \eta_{U} & \eta_{V} \\
\eta_{Q} & \eta_{I} & \rho_{V} & -\rho_{U} \\
\eta_{U} & -\rho_{V} & \eta_{I} & \rho_{Q} \\
\eta_{V} & \rho_{U} & -\rho_{Q} & \eta_{I}
\end{array}\right)\left(\begin{array}{c}
I-B_{\nu}(T) \\
Q \\
U \\
V
\end{array}\right)
$$

Solutions to the RTE: Local Thermodynamical Equilibrium

> Model atmosphere:
> temperature: $\mathrm{T}(\mathrm{z})$
> pressure: P(z)
> LOS velocity: v LOS (z)
> Magnetic field: $B(z), \theta(z), \phi(z)$
> Macroturbulent velocity: vmac
> Macroturbulent velocity: vmic

\% 9 physical quantities
$\%$ stratified atmosphere:
$9 \times \mathrm{Nz}$ free model parameters

* Too many free parameters!
* Need to constrain stratification to a limited number of nodes

Spectral Line Inversions

Forward modeling:
Set of physical parameters
(T, P, @, vLos, B..)
Reasonable assumptions (LTE, Milne-Eddington, Zeeman...)

Solve Radiative Transfer Eq.

Stokes profiles (I, Q, U, V)
1

Inverse problem:
given a set of Stokes profiles (data!!), what are the physical conditions in the atmosphere?

fitting metric + educated guess

open circles: observations
(from Vitticchié et al, 2011)
solid line: synthetic Stokes profiles

Spectral Line Inversions: General Problem

Spectral Line Inversions: Local Thermodynamic Equilibrium

Spectral Line Inversions: Milne-Eddington Approximation

Spectral Line Inversion Methods

Let's assume we know how to solve the RTE.

Inversion methods

Levenberg-Marquardt methods (least squares fitting)

Principal Component Analysis techniques (pattern recognition)

Spectral Line Inversions: the merit function

Let's assume our model atmosphere is characterized by a series of N_{p} parameters, a.

The solution to the RTE in the model a gives us a set of synthetic Stokes profiles, which we can compare to the observed ones. We can measure the difference using a merit function:

$$
\chi^{2}=\frac{1}{N_{f}} \sum_{s} \sum_{\lambda}\left[I_{s}^{\mathrm{obs}}(\lambda)-I_{s}^{\mathrm{syn}}(\lambda)\right]^{2} \omega_{s}^{2}
$$

Where the number of degrees of freedom: $\mathrm{Nf}_{\mathrm{f}}=\mathrm{N}_{\mathrm{s}} \times \mathrm{N}_{\lambda}-\mathrm{N}_{\mathrm{p}}$ $I^{\text {syn }}$ and I Iobs are the synthetic and observed Stokes profiles ω s are some weighting factors (related to measurement error). The sums are over wavelength and Stokes parameters.

Spectral Line Inversions: the merit function

$$
\chi^{2}=\frac{1}{N_{f}} \sum_{s} \sum_{\lambda}\left[I_{s}^{\mathrm{obs}}(\lambda)-I_{s}^{\mathrm{syn}}(\lambda)\right]^{2} \omega_{s}^{2}
$$

χ^{2} is a hyper-surface of N_{p} dimensions.

It quantifies the goodness of the fit
(the distance between the observed and synthetic Stokes vector) with one number!

The whole inversion problem boils down to minimizing χ^{2}

Spectral Line Inversions: Levenberg-Marquardt Techniques

The problem boils down to the minimization of χ^{2}.

The first derivative is given by:

$$
\begin{equation*}
\frac{\partial \chi^{2}}{\partial a_{i}}=\frac{2}{N_{f}} \sum_{s} \sum_{\lambda}\left[I_{s}^{\mathrm{syn}}(\lambda)-I_{s}^{\mathrm{obs}}(\lambda)\right] \omega_{s}^{2} \frac{\partial I^{\mathrm{syn}}(\lambda)}{\partial a_{i}} \tag{p}
\end{equation*}
$$

And the second derivative of χ^{2} is given by:

$$
\frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}}=\frac{2}{N_{f}} \sum_{s} \sum_{\lambda} \omega_{s}^{2}\left(\frac{\partial I_{s}^{\mathrm{syn}}(\lambda)}{\partial a_{j}} \frac{\partial I_{s}^{\mathrm{syn}}(\lambda)}{\partial a_{i}}+\left[I_{s}^{\mathrm{syn}}(\lambda)-I_{s}^{\mathrm{obs}}(\lambda)\right] \frac{\partial^{2} I^{\mathrm{syn}}(\lambda)}{\partial a_{i} \partial a_{j}}\right)
$$

When close to the minimum of χ^{2}, we can expect $\left[I^{\text {syn }}-I^{\text {obs }}\right] \simeq 0$

$$
\frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}} \approx \frac{2}{N_{f}} \sum_{s} \sum_{\lambda} \omega_{s}^{2}\left(\frac{\partial I_{s}^{\mathrm{syn}}(\lambda)}{\partial a_{j}} \frac{\partial I_{s}^{\mathrm{syn}}(\lambda)}{\partial a_{i}}\right)
$$

Spectral Line Inversions: Levenberg-Marquardt Techniques

Let's assume the model \mathbf{a} is close to the minimum of χ^{2}, so there is a perturbation δa that takes us directly to the minimum.
We can use a quadratic approximation, such that:

where $\quad H_{i j}^{\prime}=\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}} \quad \begin{gathered}\text { is half the Hessian matrix } \\ \left(\text { dimensions } \mathrm{N}_{\mathrm{p}} \times \mathrm{N}_{\mathrm{p}}\right)\end{gathered}$

Spectral Line Inversions: Levenberg-Marquardt Techniques

When one is really close to the minimum, the second order approximation is adequate, and we can equate to zero the term in parenthesis:

$$
\left(\nabla \chi^{2}+\mathbf{H}^{\prime} \delta \mathbf{a}\right)=0 \quad \longrightarrow \quad \delta \mathbf{a}=-\mathbf{H}^{\prime-1} \nabla \chi^{2} \quad \begin{aligned}
& \text { This involves inverting } \\
& \text { the Hessian matrix!! }
\end{aligned}
$$

thus we obtain a better approximation to the minimum of χ^{2} by shifting in the parameter space an amount $\boldsymbol{\delta} \mathbf{a}$.

When we're far from the minimum, we can get closer to it following the gradient (first order approximation):

$$
\delta \mathbf{a}=k \nabla \chi^{2}
$$

with k small enough!

Spectral Line Inversions: Levenberg-Marquardt Techniques

Marquardt had two insights:

* The diagonal elements of the Hessian matrix give us a sense of what good values for k could be (it's a dimensional argument).

$$
\delta a_{i}=\left(-\frac{1}{H_{i i}^{\prime}} \nabla \chi^{2} \xrightarrow{\text { fudge factor } \lambda} \delta a_{i}=\left(-\frac{1}{\lambda H_{i i}^{\prime}} \stackrel{\nabla}{ }\right.\right.
$$

\therefore The two methods can be combined into one equation, that allows to vary smoothly between the gradient and the Hessian approaches:

$$
\nabla \chi^{2}+\mathbf{H} \delta \mathbf{a}=\mathbf{0} \quad \text { where } \quad H_{i j} \equiv \begin{cases}(1+\lambda) H_{i j}^{\prime} & \text { if } i=j \\ H_{i j}^{\prime} & \text { if } i \neq j\end{cases}
$$

$\lambda \uparrow \uparrow \Rightarrow$ gradient (first order) method
$\lambda \downarrow \downarrow \Rightarrow$ hessian (second order) method

Spectral Line Inversions: Levenberg-Marquardt Techniques

Evaluate $\chi^{2}\left(\mathbf{a}_{\text {ini }}\right)$ for the initial guess model
Take modest value of $\lambda\left(\lambda=10^{-3}\right)$
Solve equation for $\delta \mathbf{a}$
Evaluate $\chi^{2}(\mathbf{a}+\delta \mathbf{a})$

\rightarrow

$\chi^{2}(\mathbf{a}+\delta \mathbf{a}) \geq \chi^{2}(\mathbf{a})$
$\chi^{2}(\mathbf{a}+\delta \mathbf{a}) \leq \chi^{2}(\mathbf{a})$

\rightarrow

Stop when χ^{2} barely decreases once or twice in a row.
This algorithm is explained in detail in "Numerical Recipes" by Press et al. !

Spectral Line Inversions: Levenberg-Marquardt Techniques

Spectral Line Inversions: Levenberg-Marquardt Techniques

white $=$ observations
red $=$ synthetic fit

Levenberg-Marquardt Techniques: Issues

\underline{H} can be quasi-singular due to different sensitivity of χ^{2} to the various model parameters. But it has to be inverted!
Singular Value Decomposition methods:
\mathbf{H} is real and symmetric $\Rightarrow \exists \mathbf{Y}$ such that: $\mathbf{H}=\mathbf{Y}^{\mathrm{T}} \mathbf{W} \mathbf{Y}$ and $\mathbf{Y} \mathbf{Y}^{\mathrm{T}}=\mathbf{Y}^{\mathrm{T}} \mathbf{Y}=\mathbf{1}$

$$
\text { So } \mathbf{H}^{-1}=\mathbf{Y}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{Y}
$$

If $\mathrm{W}_{\mathrm{k}} \downarrow \downarrow \Rightarrow$ we set $1 / \mathrm{W}_{\mathrm{k}}=0$, so a_{k} does not contribute to the model perturbation.

Global vs. local minima of χ^{2}
Levenberg-Marquardt techniques can lead to local (rather than global) minima depending on the location of the initial guess

Principal Component Analysis (PCA) Techniques

Let's assume we have a set of observations

$$
\mathbf{S}_{i j}=S_{j}\left(\lambda_{i}\right), \quad i=1, \ldots, N ; \quad j=1, \ldots, M
$$

S - Stokes vector (I,Q,U,V)
N - wavelengths
M - pixels

They are independent realizations of the Stokes profile $S(\lambda)$, so the average:

$$
\bar{S}\left(\lambda_{i}\right)=\frac{1}{M} \sum_{j=1}^{M} \mathbf{S}_{i j}, \quad i=1, \ldots, N
$$

We can define a covariance matrix:

$$
\mathbf{C}_{i j}=\sum_{l=1}^{M}\left[\mathbf{S}_{i l}-\bar{S}\left(\lambda_{i}\right)\right]\left[\mathbf{S}_{j l}-\bar{S}\left(\lambda_{j}\right)\right], \quad i, j=1, \ldots, N \quad \text { real and symmetric! }
$$

Which can be diagonalized by an orthogonal transformation:

$$
\mathbf{C} \boldsymbol{f}^{(k)}=e^{(k)} \boldsymbol{f}^{(k)}, \quad k=1, \ldots, N
$$

where $f^{f(k)}$ are the eigenvectors that form a basis for the residual $\mathrm{S}_{\mathrm{j}}(\lambda)-\bar{S}(\lambda)$
So that:

$$
S_{j}(\lambda)-\bar{S}(\lambda) \doteqdot \sum_{k=1}^{N} c_{j}^{(k)} \boldsymbol{f}^{(k)}
$$

Principal Component Analysis (PCA) Techniques

Principal Component Analysis (PCA) Techniques

Build a complete database of Stokes profiles

Determine a good set of Principal Components

For each $\mathrm{S}_{\mathrm{i}}\left(\lambda_{\mathrm{k}}\right)$ in the database calculate eigen-coefficients $c_{i}^{(k)}$

$\mathrm{d}_{\mathrm{ij}} \equiv$ PCA distance between model i and observation j index k sums over truncated set of eigen-coefficients

For each observation j choose model i that minimizes d_{ij}

Principal Component Analysis: Pros and Cons

Pros

- fast (searches best fit in a pre-built database of models)
- stable (always finds best fit: no problems of local minima)
- model independent (universal search/minimization algorithm)

Cons

- no solution refinement (can be fixed by increasing the density of the database)
- database can become unmanageably large (dimensionality of parameter space, parameter ranges; partial mitigation from optimally sampling the parameter space)

Spectral line inversions from HMI

Spectral line inversions from HMI

Courtesy: R. Bogart and K. Hayashi

