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Degree of polarization
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The degree of polarization is defined as:

In a purely absorptive medium (no emission):
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It can be demonstrated that:

✤ If   ηQ = ηU = ηV = 0  unpolarized light remains unpolarized.!
✤ If  ηI = constant, the degree of polarization, p, increases asymptotically.

Absorption and dispersion processes are non-depolarizing.!
Depolarizing effects can only appear through emission processes.



Today

✤ Symmetry properties of the Stokes profiles!
✤ Net Circular Polarization!

!
✤ Longitudinal magnetograms!
!

✤ Quiet Sun magnetic fields!
✤ Unsigned magnetic flux density!
✤ Effects of spatial resolution!

!
✤ Shortcomings of the Zeeman effect!
!
✤ Scattering polarization and the Hanle effect!

✤ Second solar spectrum



Symmetry properties of the Stokes profiles

What happens to the propagation matrix when we do a !
change of variable: (λ - λ0) → (λ0 - λ)?

In the absence of velocity gradients, this transformation is a constant modification!
of K regarding the symmetry of wavelengths with respect to (u0 - uLOS).
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Symmetry properties of the Stokes profilesK′ =
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Stokes I, Q and U are symmetric !
with respect to their central !
wavelength, while Stokes V is !
antisymmetric.
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So the RTE transforms like this:

from Orozco Suarez et al, 2006



Net circular polarization: integral of Stokes V over the wavelength!
span (W) of the spectral line
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It is zero in the absence of velocity gradients!

blue - red = 0

λ

Net Circular Polarization



B→

resolution element

A fraction of the pixel is !
non-magnetic: no contribution to!
Stokes V

A fraction of the pixel is magnetized,  with different field strengths,!
spatial extensions, plasma velocities… If we assume no velocity gradients,!
each Stokes V is still antisymmetric, but the sum might not.

+ + =  asymmetric

 However, the total NCP = 0!

Net Circular Polarization



Line Bisectors and Convective Blueshift
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splitting should be negligible (e.g. Kurucz 1993); and LTE is
a reasonable approximation for Fe (e.g. Shchukina & Trujillo
Bueno 2000), at least for 1D model atmospheres of solar-type
stars (3D NLTE studies of Fe may, however, reveal larger de-
partures from NLTE as speculated by e.g. Nordlund 1985 and
Kostik et al. 1996). By studying a large sample of neutral and
ionized Fe lines with different atomic data and therefore line
strengths, the solar photospheric convection at varying atmo-
spheric layers can be probed by analysing the resulting line
shifts and asymmetries. The Fe lines and their atomic data are
the same as described in detail in Paper II. In particular, accurate
laboratory wavelengths for the Fe i and Fe ii lines were taken
from Nave et al. (1994) and Johansson (1998, private commu-
nication), respectively. The final profiles have been computed
with the individual Fe abundances derived in Paper II.

For comparisonwith observations, the solar FTS disk-center
intensity atlas byBrault&Neckel (1987) (see alsoNeckel 1999)
has been used, due to its superior quality over the older Liege
atlas by Delbouille et al. (1973) in terms of wavelength cali-
bration (Allende Prieto & Garcı́a López 1998a,b) and contin-
uum tracement. For flux profiles the solar atlas by Kurucz et
al. (1984) has been used, which is also based on FTS-spectra
with a similar spectral resolution as the disk-center atlas. The
wavelengths for the observed profiles have been adjusted to re-
move the effects of the solar gravitational redshift (633m s−1).
All spatially averaged theoretical profiles have been convolved
with an instrumental profile to account for the finite spectral
resolution of the observed atlas. Since the atlas was acquired
with a Fourier Transform Spectrograph (FTS), the instrumental
profile corresponds to a sinc-function with λ/∆λ ≃ 520 000
in the visual rather than the normal Gaussian (e.g. Gray 1992).
The additional instrumental broadening has only a minor (but
not entirely negligible) effect on the resulting line asymmetries
due to the high resolving power of the FTS.

4. General features of 3D line formation

The convective motions and the atmospheric inhomogeneities
leave distinct fingerprints in the spectral lines,which can be used
to decipher the conditions in the line-forming layers produced
by the convection (e.g. Dravins et al. 1981; Dravins & Nord-
lund 1990a,b). Line strengths of weak lines are predominantly
determined by the average atmospheric temperature structure,
while the line widths reflect the amplitude of the Doppler shifts
introduced by the velocity fields. Line shifts and bisectors are
created by the correlations between temperature and velocity
and the details of the convective overshooting, as well as the
statistical distribution between up- and downflows. Therefore,
obtaining a good agreement between observed and predicted
profiles lend strong support to the realism of the simulations.

4.1. Spatially resolved profiles

Although Paper IV and V in the present series of articles will
discuss in detail observed and predicted spatially resolved lines,
a brief excursion is still warranted here in order to interpret the

Fig. 1. Spatially resolved profiles and bisectors for the Fe i 608.2 line.
The lines are both stronger and have higher continuum intensities in the
blueshifted granules compared with the red-shifted intergranular lanes.
The largest vertical velocities in the photosphere are encountered in the
downflows. The intensity scale is normalized to the spatially averaged
continuum level. The thick solid lines correspond to the spatially av-
eraged profile and bisector

spatially averaged profiles and bisectors presented in Sects. 5, 6
and 7.

Spatially resolved profiles take on an astonishing range of
shapes and shifts spanning several km s−1, as illustrated in
Fig. 1. The intensity contrast reversal in the higher layers of
the photosphere, i.e. granules become dark while intergranular
lanes become bright a few hundred km above the visible surface,
is clearly seen in the cores of the resolved profiles. The strengths
of spatially averaged profiles are normally biased towards the
granules, since the upflows in general are brighter (high contin-
uum intensity), have steeper temperature gradients and have a
larger area coverage than the downflows. These trends are also
observationally confirmed, which suggests that the combination
of 3D hydrodynamical model atmospheres and LTE is appro-

732 M. Asplund et al.: Line formation in solar granulation. I

splitting should be negligible (e.g. Kurucz 1993); and LTE is
a reasonable approximation for Fe (e.g. Shchukina & Trujillo
Bueno 2000), at least for 1D model atmospheres of solar-type
stars (3D NLTE studies of Fe may, however, reveal larger de-
partures from NLTE as speculated by e.g. Nordlund 1985 and
Kostik et al. 1996). By studying a large sample of neutral and
ionized Fe lines with different atomic data and therefore line
strengths, the solar photospheric convection at varying atmo-
spheric layers can be probed by analysing the resulting line
shifts and asymmetries. The Fe lines and their atomic data are
the same as described in detail in Paper II. In particular, accurate
laboratory wavelengths for the Fe i and Fe ii lines were taken
from Nave et al. (1994) and Johansson (1998, private commu-
nication), respectively. The final profiles have been computed
with the individual Fe abundances derived in Paper II.

For comparisonwith observations, the solar FTS disk-center
intensity atlas byBrault&Neckel (1987) (see alsoNeckel 1999)
has been used, due to its superior quality over the older Liege
atlas by Delbouille et al. (1973) in terms of wavelength cali-
bration (Allende Prieto & Garcı́a López 1998a,b) and contin-
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Fig. 1. The intensity contrast reversal in the higher layers of
the photosphere, i.e. granules become dark while intergranular
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bisectorsline profiles

(from Asplund et al 2000)



Longitudinal magnetograms

Based on the weak-field approximation:
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Fig.11.1. The magnetograph signal SV as a function of the longitudinal component of the mag-
netic field B∥ for a specific line – a Zeeman triplet with ḡ = 2.5 – formed in a Milne-Eddington
atmosphere (see text for details). The curves are labelled by the value of the inclination angle θ
defined in Fig.9.1, and are drawn up to a field intensity of 3500 G. The dotted line represents the
linear relation implicit in the magnetograph calibration.

velocity fields, or to differences – with respect to the average sun – of the thermo-
dynamic parameters characterizing the various structures of the solar atmosphere
(granules, intergranular lanes, faculae, pores, sunspots’ umbrae and penumbrae,
etc.).

The saturation effect and the inaccuracies just mentioned are important lim-
itations which prevent one from regarding the longitudinal magnetograph as a
fully quantitative instrument for the measurement of solar magnetic fields. Yet its
importance in solar research can hardly be overestimated. It is just through mag-
netographs that the general properties of solar magnetism have been determined
(large-scale topology, fine structure, cyclic variations, etc.) and that several cor-
relations between magnetic fields and other indicators of solar activity have been
established. It is also important to mention that the results obtained by magne-
tographs are currently used for the reconstruction of coronal magnetic fields by
means of suitable numerical techniques.

11.2. The Vector Magnetograph

The vector magnetograph is a natural generalization of the longitudinal magneto-
graph. Besides the circular polarization signal SV of Eq. (11.1), two more signals
related to linear polarization are recorded

Magnetograph signal as a !
function of BLOS strength and !
inclination angle for a spectral !
line with geff = 2.5.!
!
From Landi Degl’Innocenti & Landolfi!
“Polarization in spectral lines”



Magnetograms give us the net longitudinal component of !
the magnetic field, Bz, averaged over each resolution element. 

Yet line-of-sight magnetograms are by far the most popular !
measurement of magnetic fields in Solar Physics.

Only valid for weak fields (no effect on Stokes I)!
Assumes magnetic field has no gradients along LOS!
Only gives the component of the magnetic field along the LOS

Longitudinal magnetograms



(IMaX - SUNRISE, courtesy of V. Martínez Pillet)

HMI/SDO

Quiet Sun magnetic fields



The unsigned magnetic flux density:
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Unsigned magnetic flux density

Bz = component of the magnetic field vector projected along the LOS.

In general:!
Bz ≠ Bradial



How do measurements of unsigned magnetic 
flux change with increasing spatial resolution?

resolution element

(from Sánchez Almeida &!
Martínez González 2011)

Effects of spatial resolution on Quiet Sun magnetic fields



Shortcomings of the Zeeman Effect

The Zeeman Effect polarization signals cancel out when tangled magnetic fields are 
present at sub-pixel spatial scales.

+ = 0

Very weak magnetic fields do not produce measurable magnetic signals (when !
the Zeeman splitting is much smaller than the width of the spectral line).

vmac ↑↑ 

B = 100 G, θ = 0 deg 



Shortcomings of the Zeeman Effect

There is a 180 degree azimuth ambiguity, in the plane perpendicular to !
the LOS.

Anywhere but at disk center:!
! The azimuth ambiguity in the LOS reference frame translates into an !
! inclination (with respect to the solar radial direction) and an azimuth !
! ambiguity in the local solar frame.

Disambiguation methods are based on continuity and minimizing currents.
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1 Introduction
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When converting from LOS into a solar reference frame:



Mechanisms that produce polarization in spectral lines

 Anisotropy in the excitation mechanism of the atom!
! !

 Impact polarization!
 Optical pumping!
!

 External field breaking the axis of symmetry!
!

 Electric field!
 Magnetic field



Atomic polarization

Anisotropic illumination induces 
population imbalances between 
the magnetic energy sub-levels of 
an atom.
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If the number of π-transitions 
does not “compensate” the 
number of σ-transitions per unit 
volume and time, we will get a 
linear polarization signal.
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Fig. 4. Anisotropic illumination of the outer layers of a stellar atmosphere, indicating that the
outgoing continuum radiation (which shows limb darkening) is predominantly vertical while the
incoming radiation (which shows limb brightening) is predominantly horizontal . The figure also
illustrates the type of anisotropic illumination experienced by atoms situated at a given height
above the visible ‘surface’ of the star, including the polarization analysis of the scattered beam
at 90◦. The ‘degree of anisotropy’ of the incident radiation field is quantified by A = J2

0
/J0

0
,
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parameter as a function of frequency ν and direction Ω⃗, while µ = cos θ, with θ the polar angle
with respect to the Z-axis). The possible values of the ‘anisotropy factor’ W =

√
2 A vary between

W = −1/2, for the limiting case of illumination by a purely horizontal radiation field without
any azimuthal dependence (case b of Fig. 3), and W = 1 for purely vertical illumination (case
a of Fig. 3). It is important to point out that the larger the ‘anisotropy factor’ the larger the
fractional atomic polarization that can be induced, and the larger the amplitude of the emergent
linear polarization. We choose the positive direction for the Stokes-Q parameter along the X-axis,
i.e. along the perpendicular direction to the stellar radius vector through the observed point. The
inset shows the wavelength dependence of the anisotropy factor corresponding to the center to limb
variation of the observed solar continuum radiation. Note that in this case the maximum anisotropy
factor occurs around 2800 Å, i.e., very near the central wavelength of the k line of Mg ii, whose
polarization may contain valuable information on the magnetic fields of the transition region from
the chromosphere to the 106 K solar coronal plasma.

In order to clarify that, depending on the scattering geometry, the Hanle effect can
either destroy or create linear polarization in spectral lines, let us consider scattering
processes in a Jl = 0→Ju = 1 line transition for the following two geometries: 90◦

scattering and forward scattering.

5.1. 90◦ scattering

Figure 5 illustrates the 90◦ scattering case, in the absence and in the presence of a
magnetic field. For this geometry the largest polarization amplitude occurs for the
zero field reference case, with the direction of the linear polarization as indicated in
the top panel (i.e, perpendicular to the scattering plane).

Chromosphere:!
✤ non-frequent collisions!
✤ anisotropic illumination:  

center-to-limb variation

y ≡ LOS

(from Trujillo Bueno 2006)



anisotropic radiation

unpolarized!
radiation

linearly polarized!
radiation

90 degree!
scattering scenario

scattering !
atoms

Atomic polarization
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B = 0
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Stokes Q

Stokes U

B ≠ 0 and inclined with 
respect to the axis of 
symmetry of the radiation 
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The two lower panels illustrate what happens when the scattering processes take
place in the presence of a magnetic field pointing (a) towards the observer (left
panel) or (b) away from him/her (right panel). In both situations the polarization
amplitude is reduced with respect to the previously discussed unmagnetized case.
Moreover, the direction of the linear polarization is rotated with respect to the zero
field case. Typically, this rotation is counterclockwise for case (a), but clockwise for
case (b)3. Therefore, when opposite magnetic polarities coexist within the spatio-
temporal resolution element of the observation the direction of the linear polarization
is like in the top panel of Fig. 5, simply because the rotation effect cancels out.
However, the polarization amplitude is indeed reduced with respect to the zero
field reference case, which provides an “observable” that can be used for obtaining
empirical information on hidden, mixed polarity fields at subresolution scales in the
solar atmosphere (Stenflo, 1982; Trujillo Bueno et al., 2004).

Fig. 5. The 90◦ scattering case in the absence (top panel) and in the presence (bottom panels)
of a deterministic magnetic field.

5.2. Forward scattering

Figure 6 illustrates the case of forward scattering, in the absence and in the presence
of a magnetic field. In this geometry we have zero polarization for the unmagnetized
reference case, while the largest linear polarization (oriented along the direction
of the external magnetic field) is found for “sufficiently strong” fields (i.e., for a
magnetic strength such that the ensuing Zeeman splitting is much larger than the
level’s natural width).

In other words, in the presence of an inclined magnetic field that breaks the sym-
metry of the scattering polarization problem, forward scattering processes can pro-
duce measurable linear polarization signals in spectral lines (Trujillo Bueno, 2001).

3 This occurs when the Landé factor, gL, of the transition’s upper level is positive, while the
opposite behavior takes place if gL<0.

Atomic polarization and the Hanle Effect

(from Trujillo Bueno, 2006)



The Hanle Effect can be sensitive to very weak magnetic fields, depending!
on the spectral line (from milligauss to hectogauss).

THE PHYSICS OF SPECTRAL LINE POLARIZATION 83

Fig. 3. Illustration of the atomic polarization that is induced in the lower level of a two-level
atom (with Jl = 1 and Ju = 0) by two types of anisotropic illuminations (a and b). The incident
radiation field is assumed to be unpolarized and with axial symmetry around the vertical direction,
which is our choice here for the quantization axis of total angular momentum. In both cases, an
excess population tends to build up in the weakly absorbing sublevels. Note that the alignment
coefficient of the lower level (i.e. ρ2

0
= (N1 − 2N0 + N−1)/

√
6, Ni being the populations of the

magnetic sublevels) is negative in case (a) (where the incident beam is parallel to the quantization
axis), but positive in case (b) (where the incident beams are perpendicular to the quantization
axis).

magnetic field inclined with respect to the symmetry axis of the pumping radiation
field. The basic formula to estimate the magnetic field intensity, BH (measured in
gauss), sufficient to produce a sizable change in the atomic level polarization results
from equating the Zeeman splitting with the natural width (or inverse lifetime) of
the energy level under consideration:

BH = 1.137×10−7/(tlife gJ) , (4)

where gJ and tlife are, respectively, the Landé factor and the level’s lifetime (in
seconds), which can be either the upper or the lower level of the chosen spectral
line. This formula provides a reliable estimation only when radiative transitions
dominate completely the atomic excitation. If elastic and/or inelastic collisions are
also efficient, then the critical field increases, since it turns out to be approximately
given by (Trujillo Bueno, 2003a)

B ≈
1 + δ(1 − ϵ)

1 − ϵ
BH , (5)

where δ = D/Aul quantifies the rate of elastic (depolarizing) collisions in units of
the Einstein Aul-coefficient, and ϵ = Cul/(Cul + Aul) is the probability that a de-
excitation event is caused by collisions (with Cul the rate of inelastic collisional
transitions between the upper level “u” and the lower level “l”). The application
of this basic equation to the upper and lower levels of typical spectral lines shows
that the Hanle effect may allow us to diagnose solar and stellar magnetic fields
having intensities between at least one milligauss and a few hundred gauss, i.e., in
a parameter domain that is very hard to study via the Zeeman effect alone.

It is also sensitive to tangled magnetic fields at sub-pixel !
scales, so it doesn’t cancel out as the Zeeman polarization !
signals would.

It has to be treated within the frame of !
the quantum theory of polarization.

Hanle techniques suffer from a saturation effect, so !
there is an upper limit for the magnetic field strength !
sensitivity.

Atomic polarization and the Hanle Effect
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(Gandorfer, 2001)

The Second Solar Spectrum



Next time

!
✤ Simple solutions to the RTE!

✤ Milne-Eddington approximation!
✤ LTE approximation!

!
✤ The general inversion problem!
!
✤ Spectral line inversion algorithms!

✤ Levenberg-Marquardt techniques!
✤ Principal Component Analysis


