Present and future optical space missions: TESS & PLATO

Ângela R. G. Santos

asantos@spacescience.org

Solar Focus – Solar-Stellar Connections: Present and Future Missions Boulder, May 8th, 2020

Previous missions

CoRoT Convection, Rotation et Transits planétaires (CEA-France & ESA)

Kepler & K2

orbit observation science extension

PLATO orbit observatio

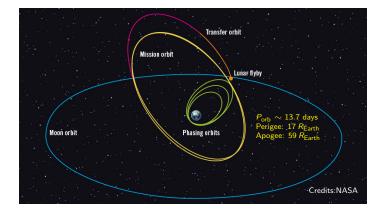
science

TESS: Transiting Exoplanet Survey Satellite

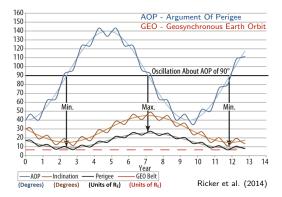
CoRoT & Kepler

TESS

orbit observations science extension


PLATO

observatio


- * two-year all-sky survey
- * main goal: discover hundreds of Earths & super-Earths
- * bright stars in the solar neighborhood
- * NASA's mission; PI: George R. Ricker (MIT)

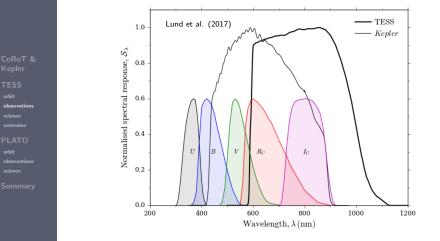
TESS Orbit

- * low radiation prevent degradation
- * facilitate data transfer downlink every \sim 13.7 days at perigee
- * 2:1 resonance with the Moon's orbit
- * inclined orbit avoid eclipses by the Earth and Moon

TESS Orbit

* Kozai cycles – three-body system: 10-month and 10-year cycles

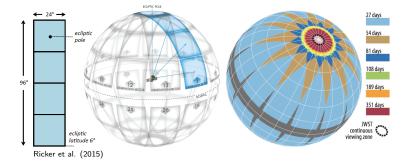
- * TESS orbital period varies between 12.8 to 14.6 days
- * the orbit is stable on the time scale of decades or more


CoRoT & Kepler

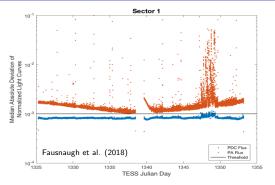
orbit observations science extension

PLATC

observatio


TESS observations

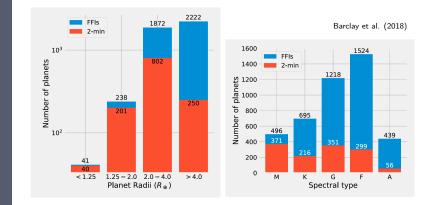
- * TESS band: 600-1000 nm
- * interest in M dwarfs, which are cool and red


TESS observations

- CoRoT & Kepler TESS
- observations science
- orbit observatio
- ~

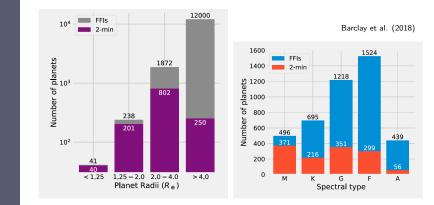
- * observation length from \sim 27 days to \sim 1 year
- * 13 participially overlapping sectors
- * 2-min cadence (main-sequence FGKM)
- * Full Frame Images with cadence of 30 min

TESS observations


- $*~\sim 1$ day gaps during downlink (perigee)
- TESS momentum dump every 2.5 days (decrease in flux + modulation)
- * times of large scatter in flux due "anomalously high pointing jitter"
- long-term systematics
- large pixels: photometric pollution

Kepler TESS orbit observations science extension

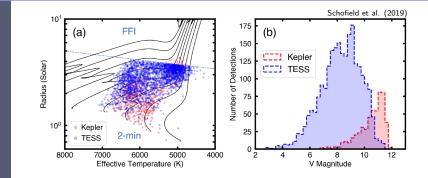
orbit


science

Exoplanets with TESS

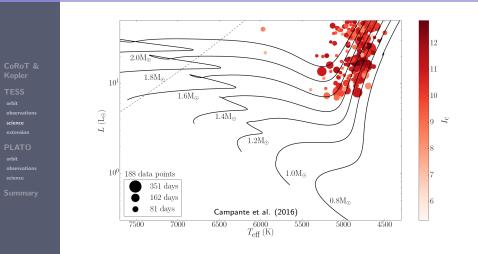
- * Expected exoplanet yield: more than 14,000 planets
- * 280 planets smaller than $2R_{Earth}$
- * 500 planets around M dwarfs
- * ground-based follow-up observations: masses and composition

Exoplanets with TESS


- * Expected exoplanet yield: more than 14,000 planets
- * 280 planets smaller than $2R_{Earth}$
- * 500 planets around M dwarfs
- * ground-based follow-up observations: masses and composition

Exoplanets with TESS

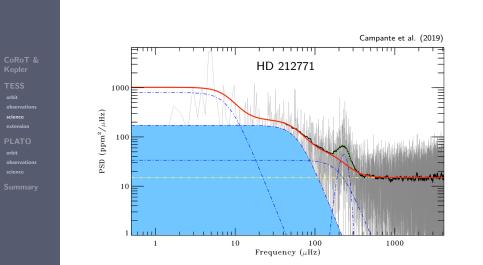
- CoRoT & Kepler
- TESS orbit observations science extension
- PLATO
- orbit observations science
- Summary



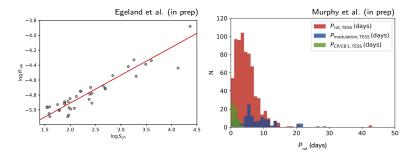
Asteroseismology with TESS

- * 2-min cadence from 2-yr TESS main-mission
- * Expected p-mode detection for 5000 main-sequence and subgiant stars
- * Asteroseismic Target List: 25,000 stars with p-mode detection probability > 5%

Asteroseismology with TESS

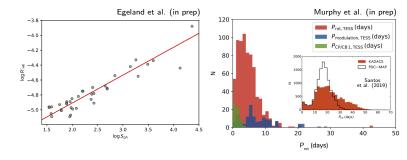


* 30-min cadence from 2-yr TESS main-mission

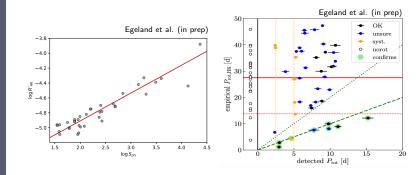

* expected p-mode detection for evolved planet hosts

Ângela Santos TESS & PLATO optical space missions

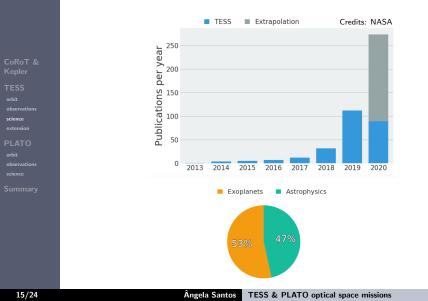
Asteroseismology with TESS



Rotation and Activity with TESS


- * TESS targets are **bright stars** in the solar neighborhood (*Kepler* targets are typically faint)
 - Ground-based observations: independent constraints
- * TESS main-mission provides short-term observations
 - inadequate for temporal variability (e.g. activity cyles)
 - biased $P_{\rm rot}$ distribution; detection of the harmonics

Rotation and Activity with TESS


- * TESS targets are **bright stars** in the solar neighborhood (*Kepler* targets are typically faint)
 - Ground-based observations: independent constraints
- * TESS main-mission provides short-term observations
 - inadequate for temporal variability (e.g. activity cyles)
 - biased P_{rot} distribution; detection of the harmonics

Rotation and Activity with TESS

- * TESS targets are **bright stars** in the solar neighborhood (*Kepler* targets are typically faint)
 - Ground-based observations: independent constraints
- * TESS main-mission provides short-term observations
 - inadequate for temporal variability (e.g. activity cyles)
 - biased $P_{\rm rot}$ distribution; detection of the harmonics

TESS publications

TESS extension

- CoRoT & Kepler
- TESS orbit observation: science extension
- PLATO
- observatio
- Summary

- * NASA aproved 2-year extension
- * short-cadence: from 1 min to 20 sec cadence
- * FFI cadence: from 30 min to 10 min

PLanetary Transits and Oscillations of stars

CoRoT & Kepler

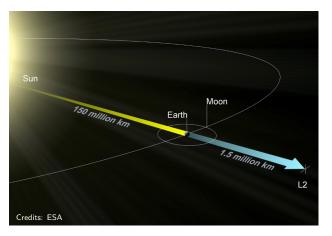
TESS orbit observations science extension

PLATO

orbit observations science

- ultra-precision, long-term, continuous photometry
- main goal: Detect and characterize terrestrial exoplanets around bright solar-type stars
- * under development; launch in 2026
- * ESA's mission; PI: DLR, Germany

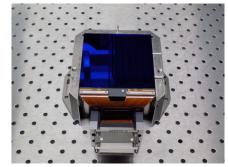
PLATO's orbit


CoRoT & Kepler

TESS orbit observation science extension

PLATO

orbit observatio science

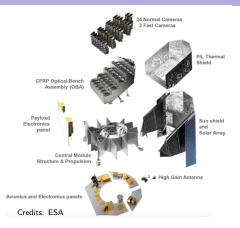

Summary

* Lagrangian point L2 of the Sun-Earth system

PLATO's observations

first CCD - Credits: ESA

- * visible band with cadence of 25 seconds
- * 26 cameras largest digital combined camera flown in space
- * extremely wide field of views: 2250 square degrees
- * lifetime: 8.5 years (current plan for nominal mission: 4.5 years)


CoRoT & Kepler

IESS orbit observations science extension

orbit observations

science

PLATO's observations

- groups of cameras point into different directions
- * ultra-precision, long-term (up to 3-yr), continuous photometry
- short-term observations of different fields (2-3 months)

observations science Summary

PLATO's science

TESS orbit observations science extension

PLATO

observatio

- bright stars in the solar neighborhood
- rocky planets (habitable zone), but also ice and giant planets
- * ground-based follow-up observations: mass and composition
- * understand the formation and evolution of planetary systems
- * asteroseismology: probing stellar structure and evolution

PLATO's science

- * planetary radii: $\sim 3\%$ accuracy
- * planetary masses (ground-based follow-up): $\sim 10\%$ accuracy
- st Asteroseismic stellar masses, radii, and ages: < 10% accuracy
- * Identification of bright targets to study planetary atmospheres
- * Star-planet interactions

Present and Future Optical Space Missions

CoRoT & Kepler

TESS orbit observations science extension

PLATO

orbit observatio .

Summary

eesa

nlato

TESS:

- Nominal mission in progress
- * First extension: 2-years (2020-2022)
- * bright stars in the solar neighborhood
- * large number of targets with short-term observations
- follow-up observations

PLATO:

- * Planing in progress; launch in 2026
- * bright stars in the solar neighborhood
- * large number of targets with long-term and short-term observations
- * focus on exoplanet research and asteroseismology
- follow-up observations

Present and future optical space missions: TESS & PLATO

Ângela R. G. Santos

asantos@spacescience.org

Solar Focus – Solar-Stellar Connections: Present and Future Missions Boulder, May 8th, 2020