

Comparing the heliospheric magnetic fields over several solar cycles

Jennimari Koskela, Ilpo Virtanen, Kalevi Mursula

Introduction

- We make a point-by-point comparison between HMF measured at Earth (hourly OMNI2 data), and coronal field produced by the PFSS model (and CSSS model)
- * Photospheric maps: WSO, HMI, MDI, SOLIS
- * WSO dataset gives us a continuos time series, starting 1976

PFSS model

- * Assumption of no electric currents between the photosphere and source surface leads to the Laplacian equation $\nabla^2 \Psi = 0$, which can be solved with a spherical harmonic expansion.
- * For this, we need to calculate coefficients *gnm* and *hnm* from the Br component in photospheric synoptic maps
- We use radial assumption and the LOS measurement

CSSS model

- * Zhao & Hoeksema 1995
- Field becomes open on cusp surface (~ 2-3 R_s), radial on source surface (~ 10-15 R_s)
- * gnm and hnm are calculated both on the photosphere and cusp surface

Methods

- * We try to determine the effect of source surface distance and number of multipoles of the spherical harmonic expansion
- We compare polarity and the power of radial decay
 - Polarity comparison is unaffected by the scale of photospheric field! It depicts how well the photospheric observations + model can predict the large scale structure of the HMF

Polarity match

$$polarity \ match = \frac{number \ of \ matched \ hours}{number \ of \ all \ hours}$$

- * Power of radial decay:
- * If we don't take into account superradial expansion and other such effects, *p* should be 2 (according to Maxwell's equations).
- * However...

Results - p

Results - polarity match

Results - PFSS vs CSSS

Conclusions

- * PFSS and CSSS models can both predict the large scale structure of the HMF fairly well.
- * During the time there is overlap between different magnetograms, they agree very well