

How radial is the photospheric magnetic field?

Ilpo Virtanen, Alexei Pevtsov and Kalevi Mursula

Ilpo.Virtanen@oulu.fi

- Line-of-sight observations of the photospheric magnetic field started in late 1950s and calibrated digital data exist since mid 1970s.
- Information about the radial magnetic field Br is important especially for coronal and heliospheric models.
- The simplest and most widely used assumption is that the photospheric magnetic field is radial and B_{LOS} is a projection of the radial field.
- Pseudo-radial magnetic field

$$B_r = B_r^{PSEUD} = \frac{B_{LOS}}{\cos \lambda}$$

Solar observations

- Originally justified by Svalgaard (1978).
- Observed magnetic field in the same region is proportional to the cosine of the angle from central meridian.
- This method does not pay attention to meridional inclination of the magnetic field.
- Assumption of radial photospheric magnetic field is used practically in all the studies which involve synoptic maps of the photospheric magnetic field.
- How valid it is?

Toroidal magnetic field

- The average large scale toroidal magnetic field (East-West, B_{φ}) can be derived using observations on consecutive days, since viewing angle changes about 14 degrees/day.
- A systematic pattern of toroidal magnetic field was found already in 1970s. (*Howard, 1974; Svalgaard et al. 1978 and Duvall et al., 1979).*
- The average B_{φ} is systematic, but rather small.
- Net tilt in the direction of rotation (to the west) of 0.6° (Shrauner and Scherrer, 1993)

Poloidal magnetic field

- Poloidal field (North-South, B_{θ}) is more difficult to derive from B_{LOS} observations since the latitudinal vantage point only varies +-7.25 degrees per year.
- Equatorward inclination of the photosperic magnetic field is often assumed, since coronal magnetic field is known to expand "super-radially" in the 'polar coronal holes.
- Ulrich et al.(2013) suggested that the polar field is few degrees inclined poleward, but the field lines don't converge anyway.
- This assumption and related correction decrease the annual oscillation in observations.

Vector magnetic field

- Synoptic maps of full vector magnetic field should provide us information about the inclination and azimuth of the magnetic field.
- Different data sets:
 - SOLIS, NSO 180*360 pixels
 - HMI, "random calibration" 1440*3600
 - HMI random, 360*720
 - HMI random, 180*360
 - HMI radial, 180*360

\|/

Supersynoptic vector map

- Longitudinal averages (supersynoptic maps, magnetic butterfly diagram) for three vector components, SOLIS/VSM observations.
- B_r and B_{θ} have typically same sign in the north but opposite signs in the south.
- This indicates equatorward inclination of the field
- B_{φ} depicts expected patterns in active regions, following Hale rule but weaker field indicate systematic eastward tilt.

- Very weak B_{φ} and B_{θ} in low latitudes, where both components correspond to transverse component in the observations.
- Faint annual "wave" of positive or negative polarity in B_{φ} and B_{θ} between active region belts.
- Is the instrument sensitivity too low to observe weak transverse fields?
- The annual variations due to the vantage point effect appear already around 50-60° latitude in vector field.

Inclination and azimuth of the field

Inclination: Angle between vector and radial direction, varies from 0° to 90°.

$$I = \arctan(\frac{\sqrt{B_{\theta}^2 + B_{\phi}^2}}{|Br|})$$

• Meriodional inclination: Angle between \hat{r} and **B**-vector projection to r- θ -plane, varies from -90° to 90°.

$$I_m = \arctan(\frac{B_\theta}{Br})$$

• Azimuth: Angle between $\hat{\varphi}$ and **B**-vector projection to $\varphi - \theta - \beta$ plane, zero in the direction of positive B_{φ} and increases clockwise from 0° to 360°.

$$A = \arctan(\frac{B_{\theta}}{B_{\phi}}) - (\frac{B_{\phi}}{|B_{\phi}|} - 1) * 90^{\circ},$$

Orientation of the magnetic field

ACADEMY

- Left: B_r , B_{θ} , B_{φ} , Carrington rotation 2100, SOLIS observations
- Middle: Inclination, meriodional inclination and azimuth.
- Right: Distributions of angles in latitude bins

Orientation of the magnetic field

- Field orientation is most radial in active regions.
- Inclination and meridional inclination have obvious latitudinal patterns.
- Field is inclined towards the equator.
- Azimuth distribution is wider and most typical directions are northward and southward.

Supersynoptic median inclination maps

- Longitudinal medians of inclination and meridional inclination.
- Inclination is smallest in mid-latitudes around active regions and increases toward poles and equator.
- Meridional inclination has a systematic pattern of being negative in the south and positive in the north

 \rightarrow Magnetic field is inclined towards the equator in any latitude.

Meridional (southward) inclination from radial, SOLIS data

- Average inclination and meridional inclination of the magnetic field based on all SOLIS synoptic vector maps in 2010-2016.
- One sigma error bars.
- Variations are quite large
- Systematic poleward increase of the inclination angle.
- Field is inclined towards equator.

- SOLIS/VSM vector field observations depict that the photospheric magnetic field has a systematic pattern of equatorward inclination.
- This allows to correct derivations of the pseudo-radial magnetic field from line-of-sight observations, radial polar field would decrease significantly.
- However, comparison between SOLIS and HMI lead to unexpected results, two instruments do not agree.

Problems

• SOLIS and HMI results do not agree

- HMI shows poleward decrease of overall inclination angle.
- HMI also depicts that magnetic field is in general inclined poleward from radial.

- B_r typically agrees, but, B_{θ} and B_{φ} only agree in strong fields and have opposite signs in two data sets especially in plages.
- This directly leads to opposite results for inclination.

Alternative method to estimate meridional inclination

- Comparison between observed radial vector field Br ("true radial") and pseudo-radial field derived from line-of-sight observations assuming that field is radial.
- If field is radial:

$$B_r = B_r^{PSEUD} = \frac{B_{LOS}}{\cos\lambda}$$

- For equatorward inclination $B_r < B_r^{PSEUD}$
- For poleward inclination $B_r > B_r^{PSEUD}$

Assuming that the instrumental effects don't play role

SOLIS true vs. pseudo radial

- Vector radial has the same magnitude in active regions, but in the other latitudes pseudo-radial magnitude is larger.
- This would indicate that field inclination is equatorward.

SOLIS true vs. pseudo radial, strong fields

\|/

- Same as previous slide, but only pixels where |Br| exceed one sigma threshold are considered.
- Latitudinal profile of the ratio is now way different.

HMI true vs. pseudo radial

 In HMI vector radial and pseudo-radial have the same magnitude around active regions, but in the other latitudes vector radial magnitude is larger.

HMI true vs. pseudo radial, strong fields

1/

- Same as previous slide, but only pixels where Br exceed one sigma threshold are considered.
- Different profile also for HMI when considering only strong fields.

- SOLIS/VSM and HMI vector field observations indicate that photospheric magnetic field is systematically tilted from radial.
- SOLIS depicts that tilt is towards equator and HMI that tilt is towards poles.
- Comparison between vector radial and pseudo-radial fields don't solve this conflict, both data sets are self consistent.
- Ratio between vector radial and pseudo radial is non-linear.
- HMI results also depend on resolution and disambiguation method.
- High latitude observations are less noisy and field strength is larger in HMI.
- Obvious contradiction between two data sets, no final conclusions yet.