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Introduction

● Our goal is to determine the magnetic structure of Earth-
impacting CMEs using a computationally efficient modelling 
scheme that spans from the lower corona up to the orbit of the 
Earth

● The scheme consists of three components:

A) A data-driven non-potential model of the coronal 
magnetic field up to 2.5 R_Sun for determining the 
magnetic structure of erupting CMEs

B) A versatile flux rope model for fitting the kinematic properties 
of the CME (magnetic properties are determined in part A) 
and feeding it to the solar wind

C) A three-dimensional MHD model, EUHFORIA, that computes 
self-consistently the dynamics of the inner heliosphere from 
0.1 AU until the orbit of Mars

Upper image courtesy: SDO/AIA. 
Lower images: Jens Pomoell
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A) Data-driven non-potential 
model of the lower corona

● The goal of part A is to constrain the magnetic 
parameters of the CME flux rope (the magnetic flux, field 
direction and chirality) at the time of the eruption

● We model the magnetic field evolution in the lower 
corona at the time of the CME eruption using two 
alternative approaches:

1)time sequence of non-linear force-free field (NLFFF) 
extrapolations

2)time-dependent magnetofrictional modelling,

both implemented in CORonal MAgnetics (CORMA) 
software package by Jens Pomoell

● E. Palmerio does also complementary work in our group 
to constrain the magnetic properties of CMEs using a 
variety of observational proxies (Palmerio et al., 2017, 
accepted)

Non-linear force-free extrapolation 
for NOAA AR 11226 by Jens 
Pomoell
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Force-free approximation  

● To keep our modelling methods computationally efficient we 
employ the force-free field approximation:

● plasma beta is small in the low corona (R < ~2.5 R_Sun)

● plasma dynamics is dominated by magnetic forces: plasma 
pressure and gravity can be neglected

● Moreover, since the evolution is in large scales quasi-static,  
the MHD momentum equation transforms into the force-free 
equation:
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Force-free extrapolations  

● When the force-free equation is solved with a fixed 
photospheric boundary condition one gets a static 
snapshot of the coronal magnetic field: a Non-Linear 
Force-Free Field (NLFFF) extrapolation 

● Low-coronal boundary condition given by a vector 
magnetogram

● Several numerical methods to solve the force-free 
equation in the corona (e.g. Wiegelmann & Sakurai, 2012)
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Force-free extrapolations using 
CORMA   

Non-linear force free extrapolation for NOAA AR 11504 created using the optimization 
method (Wheatland et al., 2000) by Jens Pomoell.
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Magnetofrictional (MF) method

● Magnetofrictional (MF) method is one option for solving the force-free 
equation (Yang et al. 1986)

● In MF method an ad hoc friction term is added to the MHD momentum 
equation, which in the force-free and quasi-static case transforms as:

● Velocity V is now artificial and always proportional to the Lorentz force. 
Evolving the magnetic field according to the induction equation relaxes 
the configuration towards minimum energy force-free state (V → 0):
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Time-dependent 
magnetofrictional method

● MF method can be expanded to a time-dependent dynamic model by letting the 
photospheric boundary condition (B_magnetogram) change in time (van 
Ballegooijen et al., 2000; Cheung & DeRosa, 2012)

● This time-dependent magnetofrictional (TMF) method describes a dynamical 
balance between coronal relaxation towards a force-free state and photospheric 
driving (i.e. the non-zero horizontal electric field)

● The method has successfully modelled formation of flux ropes and their ejections 
(e.g. Cheung & DeRosa, 2012; Gibb et al., 2014; Weinzierl et al., 2016)

● The approach is not equivalent to time-dependent MHD (force-free assumption is 
still applied), but enables modelling the slow coronal energy build-up at several 
orders of magnitude lower computational cost
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TMF simulations at the 
University of Helsinki

● Example run for NOAA AR 11504 driven by driven by photospheric 
electric field inverted from a sequence of HMI vector 
magnetograms 
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Photospheric driving: 
determination of the electric field

● The realism of the TMF method is dependent on the 
accuracy of the photospheric boundary condition, the 
electric field

● Determination of the photospheric electric field is not trivial

● The available input data consists of vector magnetograms 
(B) and (uncalibrated) Dopplergrams (V_LOS)

● Assumptions: ideal MHD + Faraday's law/ideal induction 
eq
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PDFI method

● State-of-the-art method to determine the photospheric electric field (Kazachenko et 
al., 2014) that employs all available input data 

● Decomposes the electric field into inductive (EI) and non-inductive (        ) 
components:

● The inductive component can be determined from Faraday's law and a time series of 
vector magnetograms. The non-inductive component requires additional constraints:

● PDFI method uses a combination of Dopplergram and optical flow (FLCT) 
velocities with the ideal constraint (E • B = 0) to determine          (PDFI = 
PTD-Doppler-FLCT-Ideal) 

● alternatives: differential rotation profile (Weinzierl et al., 2016), or ad hoc 
assumptions...
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ELECTRICIT – a practical toolkit 
for photospheric electric field 
inversion

● Python software toolkit for routine electric field inversion developed in our 
group

● Partly based on SunPy package (Mumford et al., 2015) and will be joined 
to it in the future 

● The toolkit is able to:

– Download SDO/HMI vector magnetograms and Dopplergrams from 
Joint Science Operations Center, JSOC (http://jsoc.stanford.edu/)

– Create cutouts from fulldisk LOS or vector magnetograms so that the 
cutout tracks a given region on the Sun (e.g. an active region) similarly 
to Space-weather HMI Active Region Patches, SHARPs (Bobra et al., 
2014; Sun, 2013). 

– Determine the electric field from a time series of processed 
magnetogram (and Dopplergram) data

http://jsoc.stanford.edu/
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ELECTRICIT – a practical toolkit 
for photospheric electric field 
inversion

● Data processing functionality includes also data enhancing 
procedures such as removal of bad pixels and spurious flips in the 
azimuth of the magnetic field (Welsch et al., 2013)

● Processed magnetogram data series can be used in many 
applications: e.g. for creating time series of NLFFF extrapolations

● Velocity processing/determination (Dopplergrams, optical flow) not 
included yet

● Electric field inversion is based on PDFI-method (with limitations)

● Currently the toolkit works on local active region scales, but 
ultimately we aim at global electric field estimates over the entire 
solar surface
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ELECTRICIT: an example cutout
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Current state of the electric field 
inversion

● Inversion currently based only on vector magnetograms. The use 
of velocity estimates will be added soon.

● Without velocity estimates PDFI-method is not complete and we 
are forced to use one of the following ad hoc assumptions to 
constrain the non-inductive component of the electric field:

● Assumption (0) sets the non-inductive component to zero, (1) 
imposes uniform vertical component of plasma vorticity (-Ω) at the 
photosphere (Cheung & DeRosa, 2012) and (2) imposes uniform 
vertical velocity (U) at the photosphere (Cheung et al., 2015)
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Example electric field inversion

Example plot of the inverted horizontal photospheric electric field and the vertical 
magnetic field Bz for a subregion of NOAA AR 11158 on March 15, 2011 at 01:48:00 TAI.
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● We have created times series of photospheric electric field 
estimates for NOAA AR 11158 using ELECTRICIT and four 
(3+1) different methods:

● PDFI method with each of the three ad hoc 
assumptions for the non-inductive electric field:

● Optical flow based DAVE4VM method (Schuck, 2008) 
fed by the same magnetograms as above:

Recent results for NOAA AR 
11158
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Optimization of the free 
parameters

● Free parameters U and Ω are optimized using the time-integrated Poynting 
flux, which gives the total injection of magnetic energy from the 
photosphere to the corona: 

● The optimal values were chosen so that they reproduce consistent time 
evolution for E(t) (between themselves and previous studies, e.g. by 
Kazachenko et al., 2015, who used the PDFI method)

● The optimal values are: U = 37 m/s and Ω = 9/128 rotations per day.

● We also studied the injection of relative magnetic helicity from the 
photosphere to the corona: 
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Energy and helicity injections

Injected magnetic energy and relative helicity for NOAA AR 11158. Black solid lines mark the 
reference values of E and H_R from Kazachenko et al. (2015) at the time of the strongest 
flare of the active region (dashed line).
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Discussion and conclusions

● The time evolution of the magnetic energy injection to the corona 
can be reproduced quite faithfully even if electric field estimates 
partly based on ad hoc assumptions are used

● Injection of relative helicity is not reproduced equally well; 
particularly the assumption (1)                                       (imposing 
constant plasma vorticity) clearly overestimates the helicity input 

● Setting the non-inductive component to zero clearly 
underestimates both energy and helicity injections

● Next we will study the sensitivity of TMF simulation output to the 
different electric fields: particularly the feedback to the 
differences in the helicity injection is studied
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Our requirements for synoptic 
magnetograms

● TMF simulations and electric field inversion in global scales require 
high cadence (~limiting cadence of 6 h, Weinzierl et al., 2016):

― flux transport simulations with high resolution

― flux transport simulations for the entire magnetic field vector (?)

― SDO/HMI daily synchronic frames 

● TMF simulations are sensitive to strong temporal discontinuities that 
can appear at the west limb of ADAPT maps (Weinzierl et al., 
2016); they may even cause spurious flux rope ejections

● Our MHD model of the solar wind (EUHFORIA) is strongly 
dependent on the synoptic map which is used to create the lower 
boundary condition of the model
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Thank you!
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