Sunspot Tracking - Student Data Sheet

DAY	Sunspot Longitude (degrees)			Number of degrees sunspots moved from previous day		
	A	B	C	A	B	C
1				HHHHHHHHH		
2						
3						
4						
5						
6						
7						
8						

September 1st

September 2nd

September 3rd

September 4th

September 5th

September 6th

September 7th

September 8th

Analysis

What is the average daily rate of sunspot movement?

To answer this, determine the total degrees of change from one day to the next. For example, if you noted the sunspot at -60° on Monday, than at -45° at the same time on Tuesday, then you can conclude that the sunspot moved 15° in one day. Repeat this calculation for each 24hour period. Then, add the daily movement values together and divide by the total number of days (24-hour periods) over which the changes took place.

Example:

DAY	Sunspot Longitude (degree)	Number of degrees sunspot moved from previous day
Day 1	-60	
Day 2	-50	$(60-50)=10$
Day 3	-40	$(50-40)=10$
Day 4	-30	$(40-30)=10$

Total number of degrees moved $=(10+10+10)=30$
Total number of observation days $=(4-1)=3$ days
Average rate of sunspot movement $=30$ degrees $/ 3$ days $=10$ degrees per day.
*Remember, this is just an example, Sunspots do NOT actually move at a rate of 10 degrees per day. You will calculate the actual rate using the data that YOU gather.

Fill in with your ACTUAL data:
Total Number of Degrees Moved from Day 1 to Day 8 =
A: \qquad B: \qquad
C: \qquad

Total Number of Days (24-hr. periods between day 1 and day 8) = 7
Rate of Sunspot movement =
A: \qquad degrees per day

B: \qquad degrees per day

C: \qquad degrees per day

Average Rate of Sunspot Movement between groups A, B, and C: degrees per day

How long does it take the Sun to make one full rotation of 360° ?

To answer this, first we need to recognize that the Earth moves around the Sun in the same direction at about 1° per day:

Earth revolves 360° around the Sun in about 365 days.

Thus:

$360 / 365=0.99^{\circ}$ per day (approximately 1 degree per day)
Therefore, because our telescopes are located on Earth, it seems like the Sun is rotating slower than it really is. We have to correct for this; we must add 1° per day to our initial calculation.

For example: If your initial calculation gave you a sunspot rate of 12° per day, the corrected rate would be 13° per day.

Lastly, use this information to draw your conclusion.

How long does it take the Sun to rotate 360º?

The Sun rotates once every

 DAYS*Note the Sun isn't a solid object, therefore it does not rotate at the same rate everywhere on its surface. The Sun rotates slightly faster at the equator than it does near the poles.

