



# Chromospheric and Coronal Diagnostics with DKIST

Serena Criscuoli
On behalf of DKIST Team





## CHROMOSPHERE

#### 2. Chromospheric lines

Chromosphere is optically thin in most of the visible/near IR, apart from few strong lines: Balmer and Paschen series, Call resonance (H&K) and subordinate triplet (849.8, 854.2, 866.2 nm), Hel triplet (1083 nm), subordinate Hel D<sub>3</sub> (587.6 nm)

• "Height of formation" is an over-simplification. Lines form over a large span, and heavily depend on local spatio-temporal conditions. Hel also strongly depends on local UV irradiation.





### 2. Chromospheric lines

• Resonance lines of alkali – e.g. Na I  $D_1$ ,  $D_2$ ; K I  $D_1$  (small  $g_L$  but sensitive to velocity)

Scattering polarization; magnetism at  $T_{min}$ , flares



| Na I D2/1 | 589/589.6nm |
|-----------|-------------|
| Mg I b2   | 517.2 nm    |
| KID1      | 769.9 nm    |
| Ca II     | 849 nm      |
| Ca II     | 854 nm      |

#### Quintero Noda 2018

1D Response Functions using the FALC model and B=1000 G,  $\gamma=45^{\circ}$ ,  $\phi=45^{\circ}$ 





- Rutten et al. (2010, 2015) compare the Na I and Mg I lines
- They seem to form at similar heights
- Maybe observing just one is enough

- ullet Fibrils are more conspicuous on  $H_{lpha}$
- However, we can infer  $\vec{B}$  with Ca II
  - See  $H_{\alpha}$  Response Function to  $\vec{B}$  in Socas Navarro & Uitenbroek (2004)



- The He I Triplet system has well-known advantages for chromospheric polarimetry. Sensitive to both chromosphere and coronal conditions.
- Formed in a (relatively) thin and localized range of heights -> slab model.
- Strongest transitions at 1083 nm and 587.6 nm (D3) have Hanle sensitivity up to 10 and 50 Gauss respectively.
- Useful for active region magnetic field mapping in the chromosphere as well as cool material in the corona!



Schad et al. (2015)



## 3. Chromospheric lines: DKIST instruments

### **Hydrogen Lines**

| Spectral Window                                   | Observing Mode | Spatial Resolution         | DKIST<br>Instrument |
|---------------------------------------------------|----------------|----------------------------|---------------------|
| 656.3 nm                                          | spectral scan  | 0.033" ; 25 km             | VTF                 |
| 656,3 nm                                          | filtergram     | 0.034" ; 25 km             | VBI                 |
| 486.1 nm                                          | filtergram     | 0.024" ; 18 km             | VBI                 |
| 656.3, 486.1, 434.0,<br>410.1, 397.0 nm           | spectrograph   | 0.04" x 0.06" ; 30 x 40 km | ViSP                |
| P <sub>11</sub> and higher, 820.4 (Paschen limit) | spectrograph   | 0.04" x 0.06" ; 30 x 40 km | ViSP                |

## 5. Chromospheric lines: DKIST instruments

#### **Calcium Lines**

| Spectral Window        | Observing Mode          | Spatial Resolution         | DKIST<br>Instrument |
|------------------------|-------------------------|----------------------------|---------------------|
| 393.3 nm               | filtergram              | 0.022" ; 16km              | VBI                 |
| 393.3, 396.8 nm        | spectrograph            | 0.04" x 0.06" ; 30 x 40 km | ViSP                |
| 854.2 nm               | spectral scan           | 0.043" ; 30 km             | VTF                 |
| 854.2 nm               | imaging<br>spectrograph | 0.06", 0.15" ; 43, 108 km  | DL-NIRSP            |
| 854.2, 849.8, 866.2 nm | spectrograph            | 0.04" x 0.06" ; 30 x 40 km | ViSP                |

#### **Helium Lines**

| Spectral Window | Observing Mode          | Spatial Resolution          | <u>DKIST</u><br><u>Instrument</u> |   |
|-----------------|-------------------------|-----------------------------|-----------------------------------|---|
| 1083.0 nm       | imaging<br>spectrograph | 0.06", 0.15" ; 43, 108 km   | DL-NIRSP                          |   |
| 1083.0 nm       | spectrograph            | 0.24 x 0.30" ; 175 x 215 km | Cryo-NIRSP                        |   |
| 587.6 nm        | spectrograph            | 0.04" x 0.06" ; 30 x 40 km  | ViSP                              | 0 |



## CORONA

#### The challenge of O/IR coronal spectral lines

- <u>Very weak</u> compared to solar disk continuum intensity  $\sim (1-100): 10^6 ---- > limited to off-limb measurements.$
- Atmospheric and telescopic scattering of disk light challenging.
- Incomplete exploration and atomic data make IR lines a big discovery space. See recent del Zanna & DeLuca (2017) review.







#### Linear polarization is much easier to measure



IR because Zeeman & Hanle available. Zeeman prop. to  $\,\lambda^2$ 

Linear polarization direction only sensitive to magnetic azimuth in plane-of-sky.

Amplitude depends on atomic orientation and requires detailed modeling to interpret.

#### Longitudinal polarization is difficult



Lin, Kuhn, Coulter 2004: 70 min. integration! Pixel=20 arcsec. D=50 cm

Requires careful calibrations (flat, cross talk)

Reason why Cryo-NIRSP is not diffraction limited

## **DKIST:** Opening a new era in coronal diagnostics!

#### **Revolutionary Coronal Features:**

4 meter aperture → More photons!!
Access to the infrared:

All-reflective design (transmission out to 28  $\mu$ m) First light instruments to 5  $\mu$ m

#### Minimizes scattered light by:

Off-axis design (no beam obscuration)
High-grade M1 polish
Cleaning procedures (CO<sub>2</sub> + washing)
Access to the lower scatter infrared.

#### Occulters and stops:

Inverse occulter at prime focus (large 5' FOV)

Lyot stop at intermediary pupil

Limb occulting at Gregorian focus



#### **DKIST** coronal diagnostics during early operations

- Emphasis on bright line observations with greatest magnetic field sensitivity.
- Corresponding peak temperature coverage: 1 to 1.6 MK
- Filter availability can be expanded in the future.

#### Maximum FOV: 2.8 arcmin -- Coordinated Operations

#### **DL-NIRSP Spectropolarimetry**

Fe XI  $\lambda$ 7892 ; Log(T) ~ 6.13 Fe XIII  $\lambda$ 10747 ; Log(T) ~ 6.22

Fe XIII λ10797 ; Log(T) ~ 6.22

He I  $\lambda 10830 \; ; \; \text{Log}(T) \sim 4^*$ 

Si X  $\lambda 14300$ ; Log(T) ~ 6.13

#### VBI Imaging

Fe XI  $\lambda$ 7892 ; Log(T) ~ 6.13

#### VISP Spectropolarimetry

Various lines: 380 to 900 nm Including FeXIV 5303, FeX 6375,

(green + yellow lines)

#### **Maximum FOV: 5 arcmin**

#### Cryo-NIRSP Spectropolar.

Fe XIII  $\lambda 10747$ ; Log(T) ~ 6.22 Fe XIII  $\lambda 10797$ ; Log(T) ~ 6.22

He I  $\lambda 10830$ ; Log(T) ~ 4\*

Si X  $\lambda 14300$ ; Log(T) ~ 6.13

Si IX  $\lambda 39350$ ; Log(T) ~ 6.04

#### Cryo-NIRSP Context Imager

Fe XIII  $\lambda 10747$ ; Log(T) ~ 6.22

He I  $\lambda 10830$ ; Log(T) ~ 4\*

Si IX  $\lambda 39340$ ; Log(T) ~ 6.04



#### Consequences of the line excitation mechanisms

- $I_{coll}$  strong function of  $n_e^2$   $I_{rad}$  depends on  $n_e$  (similar to Thompson scattered K-continuum).
- Extended morphological structures seen in white-light eclipse photos also expected in VIS/IR spectral intensity maps.







Druckmüller et al. 2014

Habbal et al. 2011

- Analysis must include radiative correction unless collisionally dominated (this is not needed for EUV).
- Mechanisms can be diagnosed using line to continuum (-polarized)
   ratios. Also helpful to pair with EUV observations.



#### Relative detectability of coronal polarization

- Stokes V sensitivity: line brightness +  $\lambda^2$  Zeeman Effect [geff=1.5] (Judge et al. 2001).
- Linear polarizability depends on atomic parameters, i.e.  $W_2(J_p,J_p)$  from Landi Degl'Innocenti & Landolfi 2004 Table 10.1.







#### Background-limited measurements at DKIST.

$$\sigma = \sqrt{I_{tot}} = \sqrt{I_{Kcor} + I_{Fcor} + I_{Ecor} + I_{bg}}$$

- Emissive-corona ( $I_{Ecor}$ ) of first-light lines typically  $> I_{kcor} > I_{Fcor}$ 
  - $\rightarrow$  Line intensities  $\lesssim 10^{-5}$  of the disk intensity
  - $\rightarrow$  QU & V polarization of a few-10% and  $\sim 10^{-4}$  of line signal, respectively.
  - $\rightarrow$  Circular polarization is  $\lesssim 10^{-9}$  of disk intensity!
- Background, I<sub>bg,</sub> originates from (1) scattering in the Earth's atmosphere, (2) telescope/instrument scattering, and (3) the thermal sky/instrument background.
- Haleakala coronal conditions excellent but variable.
- Telescope scattering due to microroughness and cleanliness of M1 with a requirement of 2.5 x 10<sup>-5</sup> of the disk intensity at 1.1 solar radii and 1 micron after washing.
- Thermal background must be controlled by cryogenic cooling for Cryo-NIRSP.



#### Modeled contributions to coronal measurements



Thermal radiation background not included in this Figure.

- Modeled line radiances of select lines from Del Zanna
   DeLuca (2017).
- Atmospheric scattering for excellent coronal skies.
- Primary mirror (M1) scattering cleaned/washed within 1
   day of observation.
- Occulters at prime focus and gregorian focus limit illumination of downstream optics. Lyot stop rejects diffraction ring of primary.

#### The thermal background is non-negligible beyond ~2.5 microns

Cryo-NIRSP's spectrograph, cryogenically cooled, nearly eliminates out-of-band thermal flux.

In-band thermal background is 10/20 % of signal at  $\lambda > 3.8 \, \mu m$ 

Context imager has higher out-of-band thermal background, but relevant only for  $\lambda > 3.0 \, \mu m$ 

Thermal background negligible for on disk observations





### Coronal measurements with Cryo-NIRSP

Sit-and-stare observations and limited field-of-view rastering is available for temporal diagnostics of, e.g., oscillations.

4 x 3 arcmin Cryo-NIRSP scan with 1" step size will require between 1 and 3 hours for a magnetic field sensitivity of a few Gauss in a single wavelength.

Must have a good understanding of what your use case demands.



### Coronal measurements with VISP, DL-NIRSP, and VBI



DL-NIRSP has a coarse sampling mode for coronal observations.  $18" \times 28"$  arcsec IFU coverage with multi-line coverage!



VBI imaging at Fe XI 789.2 nm and cool lines.



Singh, et al., 2006, J. Astron Astr, 27, 115-124

+VISP rasters or sit-and-stare observations of visible coronal lines.

### Contribution functions for Cryo-NIRSP first light spectral lines





Generated by T. Schad using Chianti v6