Spectropolarimetry and magnetic diagnostics

Rebecca Centeno High Altitude Observatory

Polarization of light

 $E_{x}(t) = \varepsilon_{x}(t) e^{i\delta_{x(t)}} e^{-2\pi i\nu_{0}t}$ $E_{y}(t) = \varepsilon_{y}(t) e^{i\delta_{y(t)}} e^{-2\pi i\nu_{0}t}$

$$I = \kappa \left(\langle \varepsilon_x^2 \rangle + \langle \varepsilon_y^2 \rangle \right)$$
$$Q = \kappa \left(\langle \varepsilon_x^2 \rangle - \langle \varepsilon_y^2 \rangle \right)$$
$$U = 2\kappa \left\langle \varepsilon_x \varepsilon_y \cos \delta(t) \right\rangle$$
$$V = 2\kappa \left\langle \varepsilon_x \varepsilon_y \sin \delta(t) \right\rangle$$

where $\delta(t) = \delta_x(t) - \delta_y(t)$

Stokes Parameters:

Rebecca Centeno

DKIST Workshop DC

Spectropolarimetry

Spectropolarimetry is the measurement of the distribution of energy and polarization of light as a function of frequency

It is an incredibly powerful tool for **remote sensing** of **magnetic fields** in the Sun's atmosphere!

Rebecca Centeno

DKIST Workshop DC

Mechanisms that produce polarization in spectral lines

• Anisotropy in the excitation mechanism of the atom

- Impact polarization
- Optical pumping
- External field breaking the axis of symmetry
 - Electric field
 - Magnetic field

Rebecca Centeno

DKIST Workshop DC

 $\Delta \lambda \mathbf{B} = (\mathbf{m} \mathbf{I} \mathbf{g} \mathbf{I} - \mathbf{m} \mathbf{u} \mathbf{g} \mathbf{u}) \lambda \mathbf{B}$

where:

$$\lambda_{\rm B} = 4.67 \ x \ 10^{-13} \ \lambda_{0^2} \ {\rm B}$$

B (gauss), λ_0 and λ_B (angstroms)

Rebecca Centeno

DKIST Workshop DC

Polarization spectra

Rebecca Centeno

DKIST Workshop DC

Polarization spectra

Rebecca Centeno

DKIST Workshop DC

Zeeman Effect

The polarization signals due to the Zeeman effect only arise because of the wavelength shift between the pi and sigma components of the spectral line.

If there is no magnetic field, there is no polarization.

Rebecca Centeno

DKIST Workshop DC

Shortcomings of the Zeeman Effect

The Zeeman Effect polarization signals cancel out when tangled magnetic fields are present at sub-pixel spatial scales.

Very weak magnetic fields do not produce measurable polarization signals (when the Zeeman splitting is much smaller than the width of the spectral line).

Mechanisms that produce polarization in spectral lines

• Anisotropy in the excitation mechanism of the atom

- Impact polarization
- Optical pumping
- External field breaking the axis of symmetry
 - Electric field
 - Magnetic field

Rebecca Centeno

DKIST Workshop DC

Atomic Polarization and the Hanle Effect

Rebecca Centeno

 σ_R

DKIST Workshop DC

Optical Pumping

(from Trujillo Bueno 2006)

Rebecca Centeno

DKIST Workshop DC

Atomic Polarization and the Hanle Effect

Rebecca Centeno

DKIST Workshop DC

Atomic Polarization and the Hanle Effect

B ≠ 0 and inclined with respect to the axis of symmetry of the radiation

Rebecca Centeno

DKIST Workshop DC

Atomic polarization and the Hanle Effect

The Hanle Effect can be sensitive to very weak magnetic fields, depending on the spectral line (from milligauss to hectogauss).

 $B_H = 1.137 \times 10^{-7} / (t_{\text{life}} g_J)$

It is also sensitive to tangled magnetic fields at sub-pixel scales, so it doesn't cancel out as the Zeeman polarization signals would.

Hanle techniques suffer from a saturation effect, so there is an upper limit for the magnetic field strength sensitivity.

It has to be treated within the framework of the quantum theory of polarization.

Rebecca Centeno

DKIST Workshop DC

Zeeman vs. Hanle

	Zeeman Effect	Scatt. polarization Hanle Effect
Prevalent in	Photosphere & Chromosphere	Chromosphere & Corona
Weak fields	*	
Strong fields		×
Small-scale mixed polarities	*	
Ambiguities	×	*
Computationally/ Conceptually		*
Rebecca Centeno	DKIST Workshop DC	January 8, 2018

How do we use this knowledge to extract information about the magnetic field?

Rebecca Centeno

DKIST Workshop DC

Spectral Line Inversions

Rebecca Centeno

DKIST Workshop DC

Forward modeling approaches

Rebecca Centeno

DKIST Workshop DC

Forward modeling approaches

<u>LTE</u>:

Stratified atmosphere/line asymmetries Thermodynamical variables (T, P, Q...) Zeeman polarization

Rebecca Centeno

DKIST Workshop DC

Forward modeling approaches

Rebecca Centeno

DKIST Workshop DC

Spectral Line Inversions

Rebecca Centeno

DKIST Workshop DC

Inversion Methods

Let's assume we know how to solve the RTE.

Blind trial and error?!?!

Pattern recognition techniques: Principal Component Analysis

Rebecca Centeno

DKIST Workshop DC

Inversions: Levenberg-Marquardt Techniques

Rebecca Centeno

DKIST Workshop DC

	Photosphere	Chromosphere
Regime	LTE	non-LTE, PRD, 3D RT
Scattering	No	Yes
Polarization	Zeeman	Zeeman/Hanle Scattering polariz.
Magnetic fields	Stronger	Weaker
Polarization signals	10 ⁻¹ - 10 ⁻³ Icont	10 ⁻³ - 10 ⁻⁵ Icont
Spectral Lines	Many (optical/IR spectrum)	Few (optical/IR spectrum)
Computationally/ Conceptually	Acceptable/Easy	Expensive/Complex
Inversions	Milne-Eddington, LTE	Milne-Eddington, slab, non-LTE
Rebecca Centeno	DKIST Workshop DC	January 8, 2018

Spectral Diagnostics: Photosphere

Zeeman splitting:

 $\Delta \lambda \mathbf{B} = (\mathbf{m} \mathbf{I} \mathbf{g} \mathbf{I} - \mathbf{m} \mathbf{u} \mathbf{g} \mathbf{u}) \lambda \mathbf{B}$

where:

Some typical *magnetically sensitive* photospheric diagnostics

Fe I 5247, 5250 Å (line ratio techniques, Sunrise IMaX) Fe I 6301.5, 6302.5 Å (Hinode spectropolarimeter) Fe I 6173 Å (SDO / HMI) Fe I 15648, 15650 Å (IR, large Lande factor == high magnetic sensitivity) Si I 10827 Å (next to He I 10830 Å)

Rebecca Centeno

DKIST Workshop DC

Spectral Diagnostics: Chromosphere

From de la Cruz Rodriguez & van Noort, 2017, figure from M. Carlsson

Most common diagnostics in the visible and IR:

- ✤ Ca II H & K, Ca II IR triplet (~8500 Å),
- H-alpha (6563 Å)
- ✤ He I D3 (5876 Å) and He I 10830 Å

Rebecca Centeno

DKIST Workshop DC

Inversion Codes

<u>Non-LTE Forward modeling:</u> Hanle-RT (Roberto Casini, HAO) RH (Han Uitenbroek, NSO)

Milne-Eddington:

VFISV / HMI code (Juanma Borrero, KIS) MERLIN / Hinode (José García, Bruce Lites, HAO) MILOS (David Orozco Suárez, IAA)

LTE codes (1D):

SIR (Basilio Ruiz Cobo, IAC): https://github.com/BasilioRuiz/SIR-code HELIX (Andreas Lagg, MPS)

<u>Constant slab model, optical pumping, atomic level polarization, Zeeman+Hanle</u> HAZEL (Andrés Asensio Ramos, IAC): https://github.com/aasensio/hazel

<u>Non-LTE (1D, no scattering polarization yet)</u> NICOLE (Héctor Socas-Navarro, IAC): https://github.com/hsocasnavarro/NICOLE STIC (Jaime de la Cruz Rodríguez, Stockholm U.): in development

Rebecca Centeno

DKIST Workshop DC

First HAO/ASP/NSO School On SOLAR SPECTROPOLARIMETRY and Diagnostic Techniques

WHAT & WHY

Solar magnetism has a direct impact on life on Earth. Both highly energetic Space Weather events and the ever-changing "Space Climate" put our recent and future expansion into near-Earth space at risk, stressing the importance of better understanding and eventually forecasting the Sun's magnetic behavior.

This school will explore the observations, the theory and the tools that make it possible to determine the state and evolution of the Sun's magnetic field that drives Space Weather and Space Climate.

WHEN & WHERE

24 Sept through 5 Oct, 2018, Estes Park, Colorado

Details available soon: https://asp.ucar.edu/spectropolarimetry

The ASP strives to have diverse representation of universities and student backgrounds at the school. Women and students from diverse backgrounds are encouraged to apply.

Rebecca Centeno

HAO

