Additional DKIST Diagnostics

Kevin Reardon (NSO)

- Continua (visible, IR)
- Molecular bands
- Photospheric lines (magnetic and non-magnetic)
- Chromospheric lines (dynamics, density)

1. Continua

- Visible continuum formed at "base of photosphere": $h \sim 0 \text{ km} (\tau_{5000} = 1)$
- IR continuum at ~ 1.5 μ m forms at continuum opacity minimum h ~ 50 km

Granulation, intergranular "bright points" (magnetic?), horizontal motions. Occasionally, WL flares

1. Continua

IR continuum (~ 3-4 μ m and above) forms higher in the atmosphere, ~ mid-photosphere (like, e.g. ٠ 170nm channel of AIA, or IRIS SJI 279.6)

Martinez-Sykora et al 2015, UV vs. Ca II H filter

120"

Penn et al 2016, 5 µm

Janssen & Cauzzi, 2006, Ca II 854.2 wing;

1. Continua: DKIST instruments

Spectral Window	Spatial Resolution	DKIST Instrument
450.3 nm	0.022" ; 16 km	VBI
668.4 nm	0.034" ; 25 km	VBI
590, 630, 660, 860 nm	0.030 – 0.043"; 20-40 km	VTF
860, 1080 nm	0.06", 0.15" ; 43, 108 km	DL-NIRSP
1565 nm	0.08", 0.15" ; 60, 108 km	DL-NIRSP
1080, 2300, 3000, 3900, 4600 nm	0.24 x 0.30" ; 175 x 215 km	Cryo-NIRSP Spectrograph
1080, 1250, 3900, 4600 nm	0.10–0.23" ; 75 – 165 km	Cryo-NIRSP Context Imager
390 – 900 nm	0.04" x 0.06" ; 30 x 40 km	ViSP

2. Molecular lines, bands

Formed in the low photosphere, provide large intensity contrast for "hot" vs. "cold" structures (strong T dependence of opacity). E.g. TiO, CN (G-band), CH.

Granulation, intergranular "bright points", horizontal motions. Occasionally, WL flares.

Xu et al 2006

NST 2010. TiO vs Hinode G-band

2. Molecular lines, bands

- Sensitive to Hanle effect, e.g. MgH, C₂ lines.
- Presence of molecular lines indicate low temperatures e.g. CO roto-vibration transitions at 4.7 μ m, require T_e < 3700 K.

Investigate small scale, tangled magnetic fields in the photosphere (e.g. via differential Hanle effect) Investigate spatio-temporal structure of low chromosphere, presence of cold bubbles ?

Spectral Window	Spatial Resolution	DKIST Instrument
430.5 nm – G-band (CH)	0.022" ; < 20 km	VBI
707.8 nm – TiO	0.034" ; 25 km	VBI
2326 nm – CO (1 st overtone)	0.24 x 0.30" ; 175 x 215 km	Cryo-NIRSP Spectrograph
4651 nm– CO (fundamental)	0.24 x 0.30" ; 175 x 215 km	Cryo-NIRSP Spectrograph
4651 nm– CO (fundamental)	0.23" ; 165km	Cryo-NIRSP Context Imager
390 – 900 nm (CH, TiO, others)	0.04" x 0.06" ; 30 x 40 km	ViSP

3. Non-magnetic photospheric lines

Several photospheric lines have g_L =0 and are not influenced by the presence of magnetic fields. Can be formed over a large span of photospheric heights (e.g. Fe II 512.3 Fe I 543.4, Fe I 567.6; Fe I 709.0, Fe II 722.4, Ti I 839.7 nm). Accurate thermo-dynamical structure of atmosphere, waves through T_{min}

Whitelight

Fe I 543.4 nm Line Core

3. Non-magnetic photospheric lines: DKIST instruments

<u>Lines</u>	Spatial Resolution	DKIST Instrument Availability
Fe I 709.9 nm	0.035"; 26 km	VTF – not at first light
390 – 900 nm	0.04" x 0.06" ; 30 x 40 km	ViSP

4. Zeeman–sensitive photospheric lines

Ishikawa, et al., 2008

4. Zeeman–sensitive photospheric lines

<u>Lines</u>	<u>Used By</u>	DKIST Instrument Availability
Fe I 524.7, 525.0 nm	IMaX	ViSP, VTF – not at first light
Fe I 617.3 nm	HMI	ViSP
Fe I 630.1, 630.2 nm	ASP, Hinode SOT/SP	ViSP, VTF
Fe I 846.8, 851.4 nm		ViSP
Si I 1082.7 nm	FIRS	DL-NIRSP, Cryo-NIRSP
Fe I 1564.8, 1565 nm	FIRS	DL-NIRSP
390 – 900 nm		ViSP

4.5 Magnetic middle-atmospheric lines: DKIST instruments

<u>Lines</u>	Spatial Resolution	DKIST Instrument Availability
Na I 589.0 nm	0.03"; 22 km	VTF
Fe I 543.4 nm Na I 589.0 nm Na I 589.6 nm K I 769.9 nm Mg I 517.3 nm	0.04" x 0.06" ; 30 x 40 km	ViSP
390 – 900 nm		

Whitelight

Fe I 5434 Å

K I 7699 Å

Na D₁ 5896 Å

Ca II 8542 Å

Na D₁ 5896 Å

Na D₁ 5896 Å

5. Chromospheric lines

- Chromosphere is optically thin in most of the visible/near IR, apart from few strong lines: Balmer and Paschen series, Call resonance (H&K) and subordinate triplet (849.8, 854.2, 866.2 nm), Hel triplet (1083 nm), subordinate Hel D₃ (587.6 nm)
- "Height of formation" is an over-simplification. Lines form over a large span, and heavily depend on local spatio-temporal conditions. Hel also strongly depends on local UV irradiation.

5. Chromospheric lines

- $H\alpha$, Balmer series: dynamics, temperature, density, depth of TR
- Paschen lines: electric fields Call lines: chromospheric dynamics, temperature
- Hel: dynamics, density in flares (esp. D₃)

120

115

5. Chromospheric lines: DKIST instruments

Hydrogen Lines

Spectral Window	Observing Mode	Spatial Resolution	DKIST Instrument
656.3 nm	spectral scan	0.033" ; 25 km	VTF
656,3 nm	filtergram	0.034" ; 25 km	VBI
486.1 nm	filtergram	0.024" ; 18 km	VBI
656.3, 486.1, 434.0, 410.1, 397.0 nm	spectrograph	0.04" x 0.06" ; 30 x 40 km	ViSP
P ₁₁ and higher, 820.4 (Paschen limit)	spectrograph	0.04" x 0.06" ; 30 x 40 km	ViSP

5. Chromospheric lines: DKIST instruments

Calcium Lines

Spectral Window	Observing Mode	Spatial Resolution	DKIST Instrument
393.3 nm	filtergram	0.022" ; 16km	VBI
393.3, 396.8 nm	spectrograph	0.04" x 0.06" ; 30 x 40 km	ViSP
854.2 nm	spectral scan	0.043" ; 30 km	VTF
854.2 nm	Imaging spectrograph	0.06", 0.15" ; 43, 108 km	DL-NIRSP
854.2, 849.8, 866.2 nm	spectrograph	0.04" x 0.06" ; 30 x 40 km	ViSP

Helium Lines

Spectral Window	Observing Mode	Spatial Resolution	DKIST Instrument
1083.0 nm	Imaging spectrograph	0.06", 0.15" ; 43, 108 km	DL-NIRSP
1083.0 nm	spectrograph	0.24 x 0.30" ; 175 x 215 km	Cryo-NIRSP
587.6 nm	spectrograph	0.04" x 0.06" ; 30 x 40 km	ViSP

SOLIS He I 10830 Å

